65 #include <mrpt/3rdparty/do_opencv_includes.h>    77 upnp::upnp(
const Mat& cameraMatrix, 
const Mat& opoints, 
const Mat& ipoints)
    79     if (cameraMatrix.depth() == CV_32F)
    80         init_camera_parameters<float>(cameraMatrix);
    82         init_camera_parameters<double>(cameraMatrix);
    84     number_of_correspondences = std::max(
    85         opoints.checkVector(3, CV_32F), opoints.checkVector(3, CV_64F));
    87     pws.resize(3 * number_of_correspondences);
    88     us.resize(2 * number_of_correspondences);
    90     if (opoints.depth() == ipoints.depth())
    92         if (opoints.depth() == CV_32F)
    93             init_points<Point3f, Point2f>(opoints, ipoints);
    95             init_points<Point3d, Point2d>(opoints, ipoints);
    97     else if (opoints.depth() == CV_32F)
    98         init_points<Point3f, Point2d>(opoints, ipoints);
   100         init_points<Point3d, Point2f>(opoints, ipoints);
   102     alphas.resize(4 * number_of_correspondences);
   103     pcs.resize(3 * number_of_correspondences);
   116 double upnp::compute_pose(Mat& 
R, Mat& t)
   118     choose_control_points();
   121     Mat* M = 
new Mat(2 * number_of_correspondences, 12, CV_64F);
   123     for (
int i = 0; i < number_of_correspondences; i++)
   125         fill_M(M, 2 * i, &alphas[0] + 4 * i, us[2 * i], us[2 * i + 1]);
   128     double mtm[12 * 12], d[12], ut[12 * 12], vt[12 * 12];
   129     Mat MtM = Mat(12, 12, CV_64F, mtm);
   130     Mat D = Mat(12, 1, CV_64F, d);
   131     Mat Ut = Mat(12, 12, CV_64F, ut);
   132     Mat Vt = Mat(12, 12, CV_64F, vt);
   135     SVD::compute(MtM, D, Ut, Vt, SVD::MODIFY_A | SVD::FULL_UV);
   136     Mat(Ut.t()).copyTo(Ut);
   140     double l_6x12[6 * 12], rho[6];
   141     Mat L_6x12 = Mat(6, 12, CV_64F, l_6x12);
   142     Mat Rho = Mat(6, 1, CV_64F, rho);
   144     compute_L_6x12(ut, l_6x12);
   147     double Betas[3][4], Efs[3][1], rep_errors[3];
   148     double Rs[3][3][3], ts[3][3];
   150     find_betas_and_focal_approx_1(&Ut, &Rho, Betas[1], Efs[1]);
   151     gauss_newton(&L_6x12, &Rho, Betas[1], Efs[1]);
   152     rep_errors[1] = compute_R_and_t(ut, Betas[1], Rs[1], ts[1]);
   154     find_betas_and_focal_approx_2(&Ut, &Rho, Betas[2], Efs[2]);
   155     gauss_newton(&L_6x12, &Rho, Betas[2], Efs[2]);
   156     rep_errors[2] = compute_R_and_t(ut, Betas[2], Rs[2], ts[2]);
   159     if (rep_errors[2] < rep_errors[1]) N = 2;
   161     Mat(3, 1, CV_64F, ts[N]).copyTo(t);
   162     Mat(3, 3, CV_64F, Rs[N]).copyTo(
R);
   168 void upnp::copy_R_and_t(
   169     const double R_src[3][3], 
const double t_src[3], 
double R_dst[3][3],
   172     for (
int i = 0; i < 3; i++)
   174         for (
int j = 0; j < 3; j++) R_dst[i][j] = R_src[i][j];
   179 void upnp::estimate_R_and_t(
double R[3][3], 
double t[3])
   181     double pc0[3], pw0[3];
   183     pc0[0] = pc0[1] = pc0[2] = 0.0;
   184     pw0[0] = pw0[1] = pw0[2] = 0.0;
   186     for (
int i = 0; i < number_of_correspondences; i++)
   188         const double* pc = &pcs[3 * i];
   189         const double* pw = &pws[3 * i];
   191         for (
int j = 0; j < 3; j++)
   197     for (
int j = 0; j < 3; j++)
   199         pc0[j] /= number_of_correspondences;
   200         pw0[j] /= number_of_correspondences;
   203     double abt[3 * 3], abt_d[3], abt_u[3 * 3], abt_v[3 * 3];
   204     Mat ABt = Mat(3, 3, CV_64F, abt);
   205     Mat ABt_D = Mat(3, 1, CV_64F, abt_d);
   206     Mat ABt_U = Mat(3, 3, CV_64F, abt_u);
   207     Mat ABt_V = Mat(3, 3, CV_64F, abt_v);
   210     for (
int i = 0; i < number_of_correspondences; i++)
   212         double* pc = &pcs[3 * i];
   213         double* pw = &pws[3 * i];
   215         for (
int j = 0; j < 3; j++)
   217             abt[3 * j] += (pc[j] - pc0[j]) * (pw[0] - pw0[0]);
   218             abt[3 * j + 1] += (pc[j] - pc0[j]) * (pw[1] - pw0[1]);
   219             abt[3 * j + 2] += (pc[j] - pc0[j]) * (pw[2] - pw0[2]);
   223     SVD::compute(ABt, ABt_D, ABt_U, ABt_V, SVD::MODIFY_A);
   224     Mat(ABt_V.t()).copyTo(ABt_V);
   226     for (
int i = 0; i < 3; i++)
   227         for (
int j = 0; j < 3; j++) 
R[i][j] = dot(abt_u + 3 * i, abt_v + 3 * j);
   230         R[0][0] * 
R[1][1] * 
R[2][2] + 
R[0][1] * 
R[1][2] * 
R[2][0] +
   231         R[0][2] * 
R[1][0] * 
R[2][1] - 
R[0][2] * 
R[1][1] * 
R[2][0] -
   232         R[0][1] * 
R[1][0] * 
R[2][2] - 
R[0][0] * 
R[1][2] * 
R[2][1];
   241     t[0] = pc0[0] - dot(
R[0], pw0);
   242     t[1] = pc0[1] - dot(
R[1], pw0);
   243     t[2] = pc0[2] - dot(
R[2], pw0);
   246 void upnp::solve_for_sign()
   250         for (
int i = 0; i < 4; i++)
   251             for (
int j = 0; j < 3; j++) ccs[i][j] = -ccs[i][j];
   253         for (
int i = 0; i < number_of_correspondences; i++)
   255             pcs[3 * i] = -pcs[3 * i];
   256             pcs[3 * i + 1] = -pcs[3 * i + 1];
   257             pcs[3 * i + 2] = -pcs[3 * i + 2];
   262 double upnp::compute_R_and_t(
   263     const double* ut, 
const double* betas, 
double R[3][3], 
double t[3])
   265     compute_ccs(betas, ut);
   270     estimate_R_and_t(
R, t);
   272     return reprojection_error(
R, t);
   275 double upnp::reprojection_error(
const double R[3][3], 
const double t[3])
   279     for (
int i = 0; i < number_of_correspondences; i++)
   281         double* pw = &pws[3 * i];
   282         double Xc = dot(
R[0], pw) + t[0];
   283         double Yc = dot(
R[1], pw) + t[1];
   284         double inv_Zc = 1.0 / (dot(
R[2], pw) + t[2]);
   285         double ue = uc + fu * Xc * inv_Zc;
   286         double ve = vc + fv * Yc * inv_Zc;
   287         double u = us[2 * i], v = us[2 * i + 1];
   289         sum2 += sqrt((u - ue) * (u - ue) + (v - ve) * (v - ve));
   292     return sum2 / number_of_correspondences;
   295 void upnp::choose_control_points()
   297     for (
int i = 0; i < 4; ++i) cws[i][0] = cws[i][1] = cws[i][2] = 0.0;
   298     cws[0][0] = cws[1][1] = cws[2][2] = 1.0;
   301 void upnp::compute_alphas()
   303     Mat CC = Mat(4, 3, CV_64F, &cws);
   304     Mat PC = Mat(number_of_correspondences, 3, CV_64F, &pws[0]);
   305     Mat ALPHAS = Mat(number_of_correspondences, 4, CV_64F, &alphas[0]);
   307     Mat CC_ = CC.clone().t();
   308     Mat PC_ = PC.clone().t();
   310     Mat row14 = Mat::ones(1, 4, CV_64F);
   311     Mat row1n = Mat::ones(1, number_of_correspondences, CV_64F);
   313     CC_.push_back(row14);
   314     PC_.push_back(row1n);
   316     ALPHAS = Mat(CC_.inv() * PC_).t();
   320     Mat* M, 
const int row, 
const double* as, 
const double u, 
const double v)
   322     auto* M1 = M->ptr<
double>(row);
   323     double* M2 = M1 + 12;
   325     for (
int i = 0; i < 4; i++)
   327         M1[3 * i] = as[i] * fu;
   329         M1[3 * i + 2] = as[i] * (uc - u);
   332         M2[3 * i + 1] = as[i] * fv;
   333         M2[3 * i + 2] = as[i] * (vc - v);
   337 void upnp::compute_ccs(
const double* betas, 
const double* ut)
   339     for (
int i = 0; i < 4; ++i) ccs[i][0] = ccs[i][1] = ccs[i][2] = 0.0;
   342     for (
int i = 0; i < N; ++i)
   344         const double* v = ut + 12 * (9 + i);
   345         for (
int j = 0; j < 4; ++j)
   346             for (
int k = 0; k < 3; ++k) ccs[j][k] += betas[i] * v[3 * j + k];
   349     for (
int i = 0; i < 4; ++i) ccs[i][2] *= fu;
   352 void upnp::compute_pcs()
   354     for (
int i = 0; i < number_of_correspondences; i++)
   356         double* a = &alphas[0] + 4 * i;
   357         double* pc = &pcs[0] + 3 * i;
   359         for (
int j = 0; j < 3; j++)
   360             pc[j] = a[0] * ccs[0][j] + a[1] * ccs[1][j] + a[2] * ccs[2][j] +
   365 void upnp::find_betas_and_focal_approx_1(
   366     Mat* Ut, Mat* Rho, 
double* betas, 
double* efs)
   368     Mat Kmf1 = Mat(12, 1, CV_64F, Ut->ptr<
double>(11));
   369     Mat dsq = Mat(6, 1, CV_64F, Rho->ptr<
double>(0));
   371     Mat D = compute_constraint_distance_2param_6eq_2unk_f_unk(Kmf1);
   377     Mat x = Mat(2, 1, CV_64F);
   380     betas[0] = sqrt(std::abs(x.at<
double>(0)));
   381     betas[1] = betas[2] = betas[3] = 0.0;
   383     efs[0] = sqrt(std::abs(x.at<
double>(1))) / betas[0];
   386 void upnp::find_betas_and_focal_approx_2(
   387     Mat* Ut, Mat* Rho, 
double* betas, 
double* efs)
   390     Mat U = Mat(12, 12, CV_64F, u);
   393     Mat Kmf1 = Mat(12, 1, CV_64F, Ut->ptr<
double>(10));
   394     Mat Kmf2 = Mat(12, 1, CV_64F, Ut->ptr<
double>(11));
   395     Mat dsq = Mat(6, 1, CV_64F, Rho->ptr<
double>(0));
   397     Mat D = compute_constraint_distance_3param_6eq_6unk_f_unk(Kmf1, Kmf2);
   403     Mat X = Mat(6, 1, CV_64F, x);
   405     solve(
A, b, X, DECOMP_QR);
   407     double solutions[18][3];
   408     generate_all_possible_solutions_for_f_unk(x, solutions);
   411     double min_error = std::numeric_limits<double>::max();
   413     for (
int i = 0; i < 18; ++i)
   415         betas[3] = solutions[i][0];
   416         betas[2] = solutions[i][1];
   417         betas[1] = betas[0] = 0.0;
   418         fu = fv = solutions[i][2];
   420         double Rs[3][3], ts[3];
   421         double error_i = compute_R_and_t(u, betas, Rs, ts);
   423         if (error_i < min_error)
   430     betas[0] = solutions[min_sol][0];
   431     betas[1] = solutions[min_sol][1];
   432     betas[2] = betas[3] = 0.0;
   434     efs[0] = solutions[min_sol][2];
   437 Mat upnp::compute_constraint_distance_2param_6eq_2unk_f_unk(
const Mat& M1)
   439     Mat P = Mat(6, 2, CV_64F);
   442     for (
int i = 1; i < 13; ++i) m[i] = *M1.ptr<
double>(i - 1);
   444     double t1 = pow(m[4], 2);
   445     double t4 = pow(m[1], 2);
   446     double t5 = pow(m[5], 2);
   447     double t8 = pow(m[2], 2);
   448     double t10 = pow(m[6], 2);
   449     double t13 = pow(m[3], 2);
   450     double t15 = pow(m[7], 2);
   451     double t18 = pow(m[8], 2);
   452     double t22 = pow(m[9], 2);
   453     double t26 = pow(m[10], 2);
   454     double t29 = pow(m[11], 2);
   455     double t33 = pow(m[12], 2);
   457     *P.ptr<
double>(0, 0) =
   458         t1 - 2 * m[4] * m[1] + t4 + t5 - 2 * m[5] * m[2] + t8;
   459     *P.ptr<
double>(0, 1) = t10 - 2 * m[6] * m[3] + t13;
   460     *P.ptr<
double>(1, 0) =
   461         t15 - 2 * m[7] * m[1] + t4 + t18 - 2 * m[8] * m[2] + t8;
   462     *P.ptr<
double>(1, 1) = t22 - 2 * m[9] * m[3] + t13;
   463     *P.ptr<
double>(2, 0) =
   464         t26 - 2 * m[10] * m[1] + t4 + t29 - 2 * m[11] * m[2] + t8;
   465     *P.ptr<
double>(2, 1) = t33 - 2 * m[12] * m[3] + t13;
   466     *P.ptr<
double>(3, 0) =
   467         t15 - 2 * m[7] * m[4] + t1 + t18 - 2 * m[8] * m[5] + t5;
   468     *P.ptr<
double>(3, 1) = t22 - 2 * m[9] * m[6] + t10;
   469     *P.ptr<
double>(4, 0) =
   470         t26 - 2 * m[10] * m[4] + t1 + t29 - 2 * m[11] * m[5] + t5;
   471     *P.ptr<
double>(4, 1) = t33 - 2 * m[12] * m[6] + t10;
   472     *P.ptr<
double>(5, 0) =
   473         t26 - 2 * m[10] * m[7] + t15 + t29 - 2 * m[11] * m[8] + t18;
   474     *P.ptr<
double>(5, 1) = t33 - 2 * m[12] * m[9] + t22;
   479 Mat upnp::compute_constraint_distance_3param_6eq_6unk_f_unk(
   480     const Mat& M1, 
const Mat& M2)
   482     Mat P = Mat(6, 6, CV_64F);
   485     for (
int i = 1; i < 13; ++i)
   487         m[1][i] = *M1.ptr<
double>(i - 1);
   488         m[2][i] = *M2.ptr<
double>(i - 1);
   491     double t1 = pow(m[1][4], 2);
   492     double t2 = pow(m[1][1], 2);
   493     double t7 = pow(m[1][5], 2);
   494     double t8 = pow(m[1][2], 2);
   495     double t11 = m[1][1] * m[2][1];
   496     double t12 = m[1][5] * m[2][5];
   497     double t15 = m[1][2] * m[2][2];
   498     double t16 = m[1][4] * m[2][4];
   499     double t19 = pow(m[2][4], 2);
   500     double t22 = pow(m[2][2], 2);
   501     double t23 = pow(m[2][1], 2);
   502     double t24 = pow(m[2][5], 2);
   503     double t28 = pow(m[1][6], 2);
   504     double t29 = pow(m[1][3], 2);
   505     double t34 = pow(m[1][3], 2);
   506     double t36 = m[1][6] * m[2][6];
   507     double t40 = pow(m[2][6], 2);
   508     double t41 = pow(m[2][3], 2);
   509     double t47 = pow(m[1][7], 2);
   510     double t48 = pow(m[1][8], 2);
   511     double t52 = m[1][7] * m[2][7];
   512     double t55 = m[1][8] * m[2][8];
   513     double t59 = pow(m[2][8], 2);
   514     double t62 = pow(m[2][7], 2);
   515     double t64 = pow(m[1][9], 2);
   516     double t68 = m[1][9] * m[2][9];
   517     double t74 = pow(m[2][9], 2);
   518     double t78 = pow(m[1][10], 2);
   519     double t79 = pow(m[1][11], 2);
   520     double t84 = m[1][10] * m[2][10];
   521     double t87 = m[1][11] * m[2][11];
   522     double t90 = pow(m[2][10], 2);
   523     double t95 = pow(m[2][11], 2);
   524     double t99 = pow(m[1][12], 2);
   525     double t101 = m[1][12] * m[2][12];
   526     double t105 = pow(m[2][12], 2);
   528     *P.ptr<
double>(0, 0) =
   529         t1 + t2 - 2 * m[1][4] * m[1][1] - 2 * m[1][5] * m[1][2] + t7 + t8;
   530     *P.ptr<
double>(0, 1) = -2 * m[2][4] * m[1][1] + 2 * t11 + 2 * t12 -
   531                            2 * m[1][4] * m[2][1] - 2 * m[2][5] * m[1][2] +
   532                            2 * t15 + 2 * t16 - 2 * m[1][5] * m[2][2];
   533     *P.ptr<
double>(0, 2) =
   534         t19 - 2 * m[2][4] * m[2][1] + t22 + t23 + t24 - 2 * m[2][5] * m[2][2];
   535     *P.ptr<
double>(0, 3) = t28 + t29 - 2 * m[1][6] * m[1][3];
   536     *P.ptr<
double>(0, 4) =
   537         -2 * m[2][6] * m[1][3] + 2 * t34 - 2 * m[1][6] * m[2][3] + 2 * t36;
   538     *P.ptr<
double>(0, 5) = -2 * m[2][6] * m[2][3] + t40 + t41;
   540     *P.ptr<
double>(1, 0) =
   541         t8 - 2 * m[1][8] * m[1][2] - 2 * m[1][7] * m[1][1] + t47 + t48 + t2;
   542     *P.ptr<
double>(1, 1) =
   543         2 * t15 - 2 * m[1][8] * m[2][2] - 2 * m[2][8] * m[1][2] + 2 * t52 -
   544         2 * m[1][7] * m[2][1] - 2 * m[2][7] * m[1][1] + 2 * t55 + 2 * t11;
   545     *P.ptr<
double>(1, 2) =
   546         -2 * m[2][8] * m[2][2] + t22 + t23 + t59 - 2 * m[2][7] * m[2][1] + t62;
   547     *P.ptr<
double>(1, 3) = t29 + t64 - 2 * m[1][9] * m[1][3];
   548     *P.ptr<
double>(1, 4) =
   549         2 * t34 + 2 * t68 - 2 * m[2][9] * m[1][3] - 2 * m[1][9] * m[2][3];
   550     *P.ptr<
double>(1, 5) = -2 * m[2][9] * m[2][3] + t74 + t41;
   552     *P.ptr<
double>(2, 0) =
   553         -2 * m[1][11] * m[1][2] + t2 + t8 + t78 + t79 - 2 * m[1][10] * m[1][1];
   554     *P.ptr<
double>(2, 1) = 2 * t15 - 2 * m[1][11] * m[2][2] + 2 * t84 -
   555                            2 * m[1][10] * m[2][1] - 2 * m[2][10] * m[1][1] +
   556                            2 * t87 - 2 * m[2][11] * m[1][2] + 2 * t11;
   557     *P.ptr<
double>(2, 2) =
   558         t90 + t22 - 2 * m[2][10] * m[2][1] + t23 - 2 * m[2][11] * m[2][2] + t95;
   559     *P.ptr<
double>(2, 3) = -2 * m[1][12] * m[1][3] + t99 + t29;
   560     *P.ptr<
double>(2, 4) =
   561         2 * t34 + 2 * t101 - 2 * m[2][12] * m[1][3] - 2 * m[1][12] * m[2][3];
   562     *P.ptr<
double>(2, 5) = t41 + t105 - 2 * m[2][12] * m[2][3];
   564     *P.ptr<
double>(3, 0) =
   565         t48 + t1 - 2 * m[1][8] * m[1][5] + t7 - 2 * m[1][7] * m[1][4] + t47;
   566     *P.ptr<
double>(3, 1) = 2 * t16 - 2 * m[1][7] * m[2][4] + 2 * t55 + 2 * t52 -
   567                            2 * m[1][8] * m[2][5] - 2 * m[2][8] * m[1][5] -
   568                            2 * m[2][7] * m[1][4] + 2 * t12;
   569     *P.ptr<
double>(3, 2) =
   570         t24 - 2 * m[2][8] * m[2][5] + t19 - 2 * m[2][7] * m[2][4] + t62 + t59;
   571     *P.ptr<
double>(3, 3) = -2 * m[1][9] * m[1][6] + t64 + t28;
   572     *P.ptr<
double>(3, 4) =
   573         2 * t68 + 2 * t36 - 2 * m[2][9] * m[1][6] - 2 * m[1][9] * m[2][6];
   574     *P.ptr<
double>(3, 5) = t40 + t74 - 2 * m[2][9] * m[2][6];
   576     *P.ptr<
double>(4, 0) =
   577         t1 - 2 * m[1][10] * m[1][4] + t7 + t78 + t79 - 2 * m[1][11] * m[1][5];
   578     *P.ptr<
double>(4, 1) =
   579         2 * t84 - 2 * m[1][11] * m[2][5] - 2 * m[1][10] * m[2][4] + 2 * t16 -
   580         2 * m[2][11] * m[1][5] + 2 * t87 - 2 * m[2][10] * m[1][4] + 2 * t12;
   581     *P.ptr<
double>(4, 2) =
   582         t19 + t24 - 2 * m[2][10] * m[2][4] - 2 * m[2][11] * m[2][5] + t95 + t90;
   583     *P.ptr<
double>(4, 3) = t28 - 2 * m[1][12] * m[1][6] + t99;
   584     *P.ptr<
double>(4, 4) =
   585         2 * t101 + 2 * t36 - 2 * m[2][12] * m[1][6] - 2 * m[1][12] * m[2][6];
   586     *P.ptr<
double>(4, 5) = t105 - 2 * m[2][12] * m[2][6] + t40;
   588     *P.ptr<
double>(5, 0) = -2 * m[1][10] * m[1][7] + t47 + t48 + t78 + t79 -
   589                            2 * m[1][11] * m[1][8];
   590     *P.ptr<
double>(5, 1) = 2 * t84 + 2 * t87 - 2 * m[2][11] * m[1][8] -
   591                            2 * m[1][10] * m[2][7] - 2 * m[2][10] * m[1][7] +
   592                            2 * t55 + 2 * t52 - 2 * m[1][11] * m[2][8];
   593     *P.ptr<
double>(5, 2) = -2 * m[2][10] * m[2][7] - 2 * m[2][11] * m[2][8] +
   594                            t62 + t59 + t90 + t95;
   595     *P.ptr<
double>(5, 3) = t64 - 2 * m[1][12] * m[1][9] + t99;
   596     *P.ptr<
double>(5, 4) =
   597         2 * t68 - 2 * m[2][12] * m[1][9] - 2 * m[1][12] * m[2][9] + 2 * t101;
   598     *P.ptr<
double>(5, 5) = t105 - 2 * m[2][12] * m[2][9] + t74;
   603 void upnp::generate_all_possible_solutions_for_f_unk(
   604     const double betas[5], 
double solutions[18][3])
   606     int matrix_to_resolve[18][9] = {
   607         {2, 0, 0, 1, 1, 0, 2, 0, 2}, {2, 0, 0, 1, 1, 0, 1, 1, 2},
   608         {2, 0, 0, 1, 1, 0, 0, 2, 2}, {2, 0, 0, 0, 2, 0, 2, 0, 2},
   609         {2, 0, 0, 0, 2, 0, 1, 1, 2}, {2, 0, 0, 0, 2, 0, 0, 2, 2},
   610         {2, 0, 0, 2, 0, 2, 1, 1, 2}, {2, 0, 0, 2, 0, 2, 0, 2, 2},
   611         {2, 0, 0, 1, 1, 2, 0, 2, 2}, {1, 1, 0, 0, 2, 0, 2, 0, 2},
   612         {1, 1, 0, 0, 2, 0, 1, 1, 2}, {1, 1, 0, 2, 0, 2, 0, 2, 2},
   613         {1, 1, 0, 2, 0, 2, 1, 1, 2}, {1, 1, 0, 2, 0, 2, 0, 2, 2},
   614         {1, 1, 0, 1, 1, 2, 0, 2, 2}, {0, 2, 0, 2, 0, 2, 1, 1, 2},
   615         {0, 2, 0, 2, 0, 2, 0, 2, 2}, {0, 2, 0, 1, 1, 2, 0, 2, 2}};
   617     int combination[18][3] = {
   618         {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6},
   619         {1, 4, 5}, {1, 4, 6}, {1, 5, 6}, {2, 3, 4}, {2, 3, 5}, {2, 3, 6},
   620         {2, 4, 5}, {2, 4, 6}, {2, 5, 6}, {3, 4, 5}, {3, 4, 6}, {3, 5, 6}};
   622     for (
int i = 0; i < 18; ++i)
   624         double matrix[9], independent_term[3];
   625         Mat M = Mat(3, 3, CV_64F, matrix);
   626         Mat I = Mat(3, 1, CV_64F, independent_term);
   627         Mat S = Mat(1, 3, CV_64F);
   629         for (
int j = 0; j < 9; ++j) matrix[j] = (
double)matrix_to_resolve[i][j];
   631         independent_term[0] = log(std::abs(betas[combination[i][0] - 1]));
   632         independent_term[1] = log(std::abs(betas[combination[i][1] - 1]));
   633         independent_term[2] = log(std::abs(betas[combination[i][2] - 1]));
   635         exp(Mat(M.inv() * I), S);
   637         solutions[i][0] = S.at<
double>(0);
   638         solutions[i][1] = S.at<
double>(1) * 
sign(betas[1]);
   639         solutions[i][2] = std::abs(S.at<
double>(2));
   643 void upnp::gauss_newton(
   644     const Mat* L_6x12, 
const Mat* Rho, 
double betas[4], 
double* f)
   646     const int iterations_number = 50;
   648     double a[6 * 4], b[6], x[4];
   649     Mat* 
A = 
new Mat(6, 4, CV_64F, a);
   650     Mat* B = 
new Mat(6, 1, CV_64F, b);
   651     Mat* X = 
new Mat(4, 1, CV_64F, x);
   653     for (
int k = 0; k < iterations_number; k++)
   655         compute_A_and_b_gauss_newton(
   656             L_6x12->ptr<
double>(0), Rho->ptr<
double>(0), betas, 
A, B, f[0]);
   658         for (
int i = 0; i < 3; i++) betas[i] += x[i];
   662     if (f[0] < 0) f[0] = -f[0];
   675 void upnp::compute_A_and_b_gauss_newton(
   676     const double* l_6x12, 
const double* rho, 
const double betas[4], Mat* 
A,
   677     Mat* b, 
double const f)
   679     for (
int i = 0; i < 6; i++)
   681         const double* rowL = l_6x12 + i * 12;
   682         auto* rowA = 
A->ptr<
double>(i);
   684         rowA[0] = 2 * rowL[0] * betas[0] + rowL[1] * betas[1] +
   687                       (2 * rowL[6] * betas[0] + rowL[7] * betas[1] +
   689         rowA[1] = rowL[1] * betas[0] + 2 * rowL[3] * betas[1] +
   692                       (rowL[7] * betas[0] + 2 * rowL[9] * betas[1] +
   693                        rowL[10] * betas[2]);
   694         rowA[2] = rowL[2] * betas[0] + rowL[4] * betas[1] +
   695                   2 * rowL[5] * betas[2] +
   697                       (rowL[8] * betas[0] + rowL[10] * betas[1] +
   698                        2 * rowL[11] * betas[2]);
   701             (rowL[6] * betas[0] * betas[0] + rowL[7] * betas[0] * betas[1] +
   702              rowL[8] * betas[0] * betas[2] + rowL[9] * betas[1] * betas[1] +
   703              rowL[10] * betas[1] * betas[2] + rowL[11] * betas[2] * betas[2]);
   707             (rowL[0] * betas[0] * betas[0] + rowL[1] * betas[0] * betas[1] +
   708              rowL[2] * betas[0] * betas[2] + rowL[3] * betas[1] * betas[1] +
   709              rowL[4] * betas[1] * betas[2] + rowL[5] * betas[2] * betas[2] +
   710              f * f * rowL[6] * betas[0] * betas[0] +
   711              f * f * rowL[7] * betas[0] * betas[1] +
   712              f * f * rowL[8] * betas[0] * betas[2] +
   713              f * f * rowL[9] * betas[1] * betas[1] +
   714              f * f * rowL[10] * betas[1] * betas[2] +
   715              f * f * rowL[11] * betas[2] * betas[2]);
   719 void upnp::compute_L_6x12(
const double* ut, 
double* l_6x12)
   729     for (
int i = 0; i < 3; i++)
   732         for (
int j = 0; j < 6; j++)
   734             dv[i][j][0] = v[i][3 * a] - v[i][3 * b];
   735             dv[i][j][1] = v[i][3 * a + 1] - v[i][3 * b + 1];
   736             dv[i][j][2] = v[i][3 * a + 2] - v[i][3 * b + 2];
   747     for (
int i = 0; i < 6; i++)
   749         double* row = l_6x12 + 12 * i;
   751         row[0] = dotXY(dv[0][i], dv[0][i]);
   752         row[1] = 2.0f * dotXY(dv[0][i], dv[1][i]);
   753         row[2] = dotXY(dv[1][i], dv[1][i]);
   754         row[3] = 2.0f * dotXY(dv[0][i], dv[2][i]);
   755         row[4] = 2.0f * dotXY(dv[1][i], dv[2][i]);
   756         row[5] = dotXY(dv[2][i], dv[2][i]);
   758         row[6] = dotZ(dv[0][i], dv[0][i]);
   759         row[7] = 2.0f * dotZ(dv[0][i], dv[1][i]);
   760         row[8] = 2.0f * dotZ(dv[0][i], dv[2][i]);
   761         row[9] = dotZ(dv[1][i], dv[1][i]);
   762         row[10] = 2.0f * dotZ(dv[1][i], dv[2][i]);
   763         row[11] = dotZ(dv[2][i], dv[2][i]);
   767 void upnp::compute_rho(
double* rho)
   769     rho[0] = dist2(cws[0], cws[1]);
   770     rho[1] = dist2(cws[0], cws[2]);
   771     rho[2] = dist2(cws[0], cws[3]);
   772     rho[3] = dist2(cws[1], cws[2]);
   773     rho[4] = dist2(cws[1], cws[3]);
   774     rho[5] = dist2(cws[2], cws[3]);
   777 double upnp::dist2(
const double* p1, 
const double* p2)
   779     return (p1[0] - p2[0]) * (p1[0] - p2[0]) +
   780            (p1[1] - p2[1]) * (p1[1] - p2[1]) +
   781            (p1[2] - p2[2]) * (p1[2] - p2[2]);
   784 double upnp::dot(
const double* v1, 
const double* v2)
   786     return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2];
   789 double upnp::dotXY(
const double* v1, 
const double* v2)
   791     return v1[0] * v2[0] + v1[1] * v2[1];
   794 double upnp::dotZ(
const double* v1, 
const double* v2) { 
return v1[2] * v2[2]; }
   797     return (v < 0.0) ? -1.0 : (v > 0.0) ? 1.0 : 0.0;
   800 void upnp::qr_solve(Mat* 
A, Mat* b, Mat* X)
   802     const int nr = 
A->rows;
   803     const int nc = 
A->cols;
   805     if (max_nr != 0 && max_nr < nr)
   817     double *pA = 
A->ptr<
double>(0), *ppAkk = pA;
   818     for (
int k = 0; k < nc; k++)
   820         double *ppAik1 = ppAkk, eta = fabs(*ppAik1);
   821         for (
int i = k + 1; i < nr; i++)
   823             double elt = fabs(*ppAik1);
   824             if (eta < elt) eta = elt;
   836             double *ppAik2 = ppAkk, sum2 = 0.0, inv_eta = 1. / eta;
   837             for (
int i = k; i < nr; i++)
   840                 sum2 += *ppAik2 * *ppAik2;
   843             double sigma = sqrt(sum2);
   844             if (*ppAkk < 0) sigma = -sigma;
   846             A1[k] = sigma * *ppAkk;
   847             A2[k] = -eta * sigma;
   848             for (
int j = k + 1; j < nc; j++)
   850                 double *ppAik = ppAkk, 
sum = 0;
   851                 for (
int i = k; i < nr; i++)
   853                     sum += *ppAik * ppAik[j - k];
   856                 double tau = 
sum / 
A1[k];
   858                 for (
int i = k; i < nr; i++)
   860                     ppAik[j - k] -= tau * *ppAik;
   869     double *ppAjj = pA, *pb = b->ptr<
double>(0);
   870     for (
int j = 0; j < nc; j++)
   872         double *ppAij = ppAjj, tau = 0;
   873         for (
int i = j; i < nr; i++)
   875             tau += *ppAij * pb[i];
   880         for (
int i = j; i < nr; i++)
   882             pb[i] -= tau * *ppAij;
   889     auto* pX = X->ptr<
double>(0);
   890     pX[nc - 1] = pb[nc - 1] / A2[nc - 1];
   891     for (
int i = nc - 2; i >= 0; i--)
   893         double *ppAij = pA + i * nc + (i + 1), 
sum = 0;
   895         for (
int j = i + 1; j < nc; j++)
   897             sum += *ppAij * pX[j];
   900         pX[i] = (pb[i] - 
sum) / A2[i];
 Unified PnP - Eigen Wrapper for OpenCV function. 
 
Perspective n Point (PnP) Algorithms toolkit for MRPT mrpt_vision_grp. 
 
CONTAINER::Scalar sum(const CONTAINER &v)
Computes the sum of all the elements. 
 
int sign(T x)
Returns the sign of X as "1" or "-1".