32 template <TRobustKernelType KERNEL_TYPE,
typename T =
double>
46 inline T
eval(
const T r2, T& out_1st_deriv, T& out_2nd_deriv)
65 inline T
eval(
const T r2, T& out_1st_deriv, T& out_2nd_deriv)
67 const T param_sq_inv = 1.0 / param_sq;
68 const T a = 1 + r2 * param_sq_inv;
69 const T b = std::sqrt(a);
70 out_1st_deriv = 1. / b;
71 out_2nd_deriv = -0.5 * param_sq_inv * out_1st_deriv / a;
72 return 2 * param_sq * (b - 1);
T eval(const T r2, T &out_1st_deriv, T &out_2nd_deriv)
Evaluates the kernel function for the squared error r2 and returns robustified squared error and deri...
Pseudo-huber robust kernel.
This base provides a set of functions for maths stuff.
T eval(const T r2, T &out_1st_deriv, T &out_2nd_deriv)
Evaluates the kernel function for the squared error r2 and returns robustified squared error and deri...
No robust kernel, use standard least squares: rho(r)= 1/2 * r^2.
TRobustKernelType
The different types of kernels for usage within a robustified least-squares estimator.