69         size_t p_size, 
size_t p_pick, std::vector<size_t>& p_ind);
    74         std::set<size_t> p_set, 
size_t p_pick, std::vector<size_t>& p_ind);
    77     template <
typename TModelFit>
    79         const TModelFit& p_state, 
size_t p_kernelSize,
    80         const typename TModelFit::Real& p_fitnessThreshold,
    81         typename TModelFit::Model& p_bestModel, std::vector<size_t>& p_inliers);
    84     template <
typename TModelFit>
    87         typename TModelFit::Model 
model;
    99     template <
typename TModelFit>
   101         const TModelFit& p_state, 
size_t p_kernelSize,
   102         const typename TModelFit::Real& p_fitnessThreshold,
   103         size_t p_populationSize, 
size_t p_maxIteration,
   104         typename TModelFit::Model& p_bestModel, std::vector<size_t>& p_inliers);
   109 #define math_modelsearch_h 
std::vector< size_t > sample
 
Model search implementations: RANSAC and genetic algorithm. 
 
bool ransacSingleModel(const TModelFit &p_state, size_t p_kernelSize, const typename TModelFit::Real &p_fitnessThreshold, typename TModelFit::Model &p_bestModel, std::vector< size_t > &p_inliers)
Run the ransac algorithm searching for a single model. 
 
std::vector< size_t > inliers
 
This base provides a set of functions for maths stuff. 
 
void pickRandomIndex(size_t p_size, size_t p_pick, std::vector< size_t > &p_ind)
Select random (unique) indices from the 0..p_size sequence. 
 
bool geneticSingleModel(const TModelFit &p_state, size_t p_kernelSize, const typename TModelFit::Real &p_fitnessThreshold, size_t p_populationSize, size_t p_maxIteration, typename TModelFit::Model &p_bestModel, std::vector< size_t > &p_inliers)
Run a generic programming version of ransac searching for a single model. 
 
static bool compare(const TSpecies *p_a, const TSpecies *p_b)