| 
| enum   | mrpt::slam::TDataAssociationMethod { mrpt::slam::assocNN = 0, 
mrpt::slam::assocJCBB
 } | 
|   | Different algorithms for data association, used in mrpt::slam::data_association.  More...
  | 
|   | 
| enum   | mrpt::slam::TDataAssociationMetric { mrpt::slam::metricMaha = 0, 
mrpt::slam::metricML
 } | 
|   | Different metrics for data association, used in mrpt::slam::data_association For a comparison of both methods see paper:  More...
  | 
|   | 
| using  | mrpt::slam::observation_index_t = size_t | 
|   | Used in mrpt::slam::TDataAssociationResults.  More...
  | 
|   | 
| using  | mrpt::slam::prediction_index_t = size_t | 
|   | Used in mrpt::slam::TDataAssociationResults.  More...
  | 
|   | 
| void  | mrpt::slam::data_association_full_covariance (const mrpt::math::CMatrixDouble &Z_observations_mean, const mrpt::math::CMatrixDouble &Y_predictions_mean, const mrpt::math::CMatrixDouble &Y_predictions_cov, TDataAssociationResults &results, const TDataAssociationMethod method=assocJCBB, const TDataAssociationMetric metric=metricMaha, const double chi2quantile=0.99, const bool DAT_ASOC_USE_KDTREE=true, const std::vector< prediction_index_t > &predictions_IDs=std::vector< prediction_index_t >(), const TDataAssociationMetric compatibilityTestMetric=metricMaha, const double log_ML_compat_test_threshold=0.0) | 
|   | Computes the data-association between the prediction of a set of landmarks and their observations, all of them with covariance matrices - Generic version with prediction full cross-covariances.  More...
  | 
|   | 
| void  | mrpt::slam::data_association_independent_predictions (const mrpt::math::CMatrixDouble &Z_observations_mean, const mrpt::math::CMatrixDouble &Y_predictions_mean, const mrpt::math::CMatrixDouble &Y_predictions_cov, TDataAssociationResults &results, const TDataAssociationMethod method=assocJCBB, const TDataAssociationMetric metric=metricMaha, const double chi2quantile=0.99, const bool DAT_ASOC_USE_KDTREE=true, const std::vector< prediction_index_t > &predictions_IDs=std::vector< prediction_index_t >(), const TDataAssociationMetric compatibilityTestMetric=metricMaha, const double log_ML_compat_test_threshold=0.0) | 
|   | Computes the data-association between the prediction of a set of landmarks and their observations, all of them with covariance matrices - Generic version with NO prediction cross-covariances.  More...
  | 
|   |