25 #include <Eigen/Dense> 45 :
mean(init_Mean), cov_inv(init_CovInv)
53 :
mean(init_Mean), cov_inv()
72 in >> p.
x >> p.
y >> p.
phi;
116 if (
this == &o)
return;
145 cov_inv(0, 0) = ptr->cov_inv(0, 0);
146 cov_inv(1, 1) = ptr->cov_inv(1, 1);
147 cov_inv(2, 2) = ptr->cov_inv(3, 3);
159 o_cov(0, 0) = C(0, 0);
160 o_cov(1, 1) = C(1, 1);
161 o_cov(2, 2) = C(3, 3);
162 o_cov(0, 1) = o_cov(1, 0) = C(0, 1);
163 o_cov(0, 2) = o_cov(2, 0) = C(0, 3);
164 o_cov(1, 2) = o_cov(2, 1) = C(1, 3);
176 if (!f)
return false;
180 for (
unsigned int i = 0; i < 3; i++)
192 const CPose3D& newReferenceBase_)
207 const CPose2D& newReferenceBase)
220 const double ccos = cos(ang);
221 const double ssin = sin(ang);
223 alignas(MRPT_MAX_STATIC_ALIGN_BYTES)
224 const double rot_vals[] = {ccos, -ssin, 0., ssin, ccos, 0., 0., 0., 1.};
244 outPart.
x(
mean.
x() + v[0]);
245 outPart.
y(
mean.
y() + v[1]);
252 "__DEBUG_EXC_DUMP_drawSingleSample_COV_INV.txt"););
256 size_t N, std::vector<CVectorDouble>& outSamples)
const 262 std::vector<CVectorDouble> rndSamples;
265 outSamples.resize(N);
266 for (
size_t i = 0; i < N; i++)
268 outSamples[i].resize(3);
269 outSamples[i][0] =
mean.
x() + rndSamples[i][0];
270 outSamples[i][1] =
mean.
y() + rndSamples[i][1];
271 outSamples[i][2] =
mean.
phi() + rndSamples[i][2];
284 const double minMahalanobisDistToDrop)
302 this->
cov_inv = C1_inv + C2_inv;
308 this->
mean.
x(x(0, 0));
309 this->
mean.
y(x(1, 0));
328 const double ccos = ::cos(
mean.
phi());
329 const double ssin = ::sin(
mean.
phi());
332 alignas(MRPT_MAX_STATIC_ALIGN_BYTES)
const double H_values[] = {
333 -ccos, -ssin,
mean.
x() * ssin -
mean.
y() * ccos,
334 ssin, -ccos,
mean.
x() * ccos +
mean.
y() * ssin,
339 out->cov_inv.asEigen().noalias() =
401 if (MU[0] == 0 && MU[1] == 0 && MU[2] == 0)
423 out <<
"Mean: " << obj.
mean <<
"\n";
424 out <<
"Inverse cov:\n" << obj.
cov_inv <<
"\n";
A namespace of pseudo-random numbers generators of diferent distributions.
void bayesianFusion(const CPosePDF &p1, const CPosePDF &p2, const double minMahalanobisDistToDrop=0) override
Bayesian fusion of two points gauss.
void operator+=(const CPose2D &Ap)
Makes: thisPDF = thisPDF + Ap, where "+" is pose composition (both the mean, and the covariance matri...
MAT_C::Scalar multiply_HtCH_scalar(const VECTOR_H &H, const MAT_C &C)
r (scalar) = H^t*C*H (H: column vector, C: symmetric matrix)
CPose2D mean
The mean value.
This class is a "CSerializable" wrapper for "CMatrixDynamic<double>".
int void fclose(FILE *f)
An OS-independent version of fclose.
#define IMPLEMENTS_SERIALIZABLE(class_name, base, NameSpace)
To be added to all CSerializable-classes implementation files.
mrpt::math::TPoint2D operator+(const CPose2D &pose, const mrpt::math::TPoint2D &pnt)
Compose a 2D point from a new coordinate base given by a 2D pose.
std::ostream & operator<<(std::ostream &o, const CPoint2D &p)
Dumps a point as a string (x,y)
bool saveToTextFile(const std::string &file) const override
Save PDF's particles to a text file, containing the 2D pose in the first line, then the covariance ma...
This file implements miscelaneous matrix and matrix/vector operations, and internal functions in mrpt...
void getCovariance(mrpt::math::CMatrixDouble &cov) const
Returns the estimate of the covariance matrix (STATE_LEN x STATE_LEN covariance matrix) ...
virtual void getMean(type_value &mean_point) const =0
Returns the mean, or mathematical expectation of the probability density distribution (PDF)...
void enforceCovSymmetry()
Assures the symmetry of the covariance matrix (eventually certain operations in the math-coprocessor ...
void drawManySamples(size_t N, std::vector< mrpt::math::CVectorDouble > &outSamples) const override
Draws a number of samples from the distribution, and saves as a list of 1x3 vectors, where each row contains a (x,y,phi) datum.
#define MRPT_END_WITH_CLEAN_UP(stuff)
mrpt::math::CMatrixDouble33 cov
The 3x3 covariance matrix.
void saveToTextFile(const std::string &file, mrpt::math::TMatrixTextFileFormat fileFormat=mrpt::math::MATRIX_FORMAT_ENG, bool appendMRPTHeader=false, const std::string &userHeader=std::string()) const
Saves the vector/matrix to a file compatible with MATLAB/Octave text format.
Virtual base class for "schematic archives" (JSON, XML,...)
#define MRPT_THROW_UNKNOWN_SERIALIZATION_VERSION(__V)
For use in CSerializable implementations.
#define ASSERT_(f)
Defines an assertion mechanism.
void wrapToPiInPlace(T &a)
Modifies the given angle to translate it into the ]-pi,pi] range.
This base provides a set of functions for maths stuff.
Derived inverse() const
Returns the inverse of a general matrix using LU.
double evaluateNormalizedPDF(const CPose2D &x) const
Evaluates the ratio PDF(x) / PDF(MEAN), that is, the normalized PDF in the range [0,1].
#define CLASS_ID(T)
Access to runtime class ID for a defined class name.
CMatrixFixed< double, 3, 1 > CMatrixDouble31
void copyFrom(const CPosePDF &o) override
Copy operator, translating if necesary (for example, between particles and gaussian representations) ...
Declares a class that represents a Probability Density function (PDF) of a 2D pose ...
double phi() const
Get the phi angle of the 2D pose (in radians)
void inverse(CPosePDF &o) const override
Returns a new PDF such as: NEW_PDF = (0,0,0) - THIS_PDF.
double evaluatePDF(const CPose2D &x) const
Evaluates the PDF at a given point.
virtual const mrpt::rtti::TRuntimeClassId * GetRuntimeClass() const override
Returns information about the class of an object in runtime.
void drawGaussianMultivariateMany(VECTOR_OF_VECTORS &ret, size_t desiredSamples, const COVMATRIX &cov, const typename VECTOR_OF_VECTORS::value_type *mean=nullptr)
Generate a given number of multidimensional random samples according to a given covariance matrix...
CPose2D operator-(const CPose2D &p)
Unary - operator: return the inverse pose "-p" (Note that is NOT the same than a pose with negative x...
#define IS_CLASS(obj, class_name)
True if the given reference to object (derived from mrpt::rtti::CObject) is of the given class...
double x() const
Common members of all points & poses classes.
Derived inverse_LLt() const
Returns the inverse of a symmetric matrix using LLt.
CMatrixDouble cov(const MATRIX &v)
Computes the covariance matrix from a list of samples in an NxM matrix, where each row is a sample...
type_value getMeanVal() const
Returns the mean, or mathematical expectation of the probability density distribution (PDF)...
void inverseComposition(const CPosePDFGaussian &x, const CPosePDFGaussian &ref)
Set , computing the mean using the "-" operator and the covariances through the corresponding Jacobi...
Declares a class that represents a probability density function (pdf) of a 2D pose (x...
Classes for 2D/3D geometry representation, both of single values and probability density distribution...
#define SCHEMA_DESERIALIZE_DATATYPE_VERSION()
For use inside serializeFrom(CSchemeArchiveBase) methods.
int fprintf(FILE *fil, const char *format,...) noexcept MRPT_printf_format_check(2
An OS-independent version of fprintf.
void rotateCov(const double ang)
Rotate the covariance matrix by replacing it by , where .
CPosePDFGaussianInf()
Default constructor (mean=all zeros, inverse covariance=all zeros -> so be careful!) ...
This is the global namespace for all Mobile Robot Programming Toolkit (MRPT) libraries.
A Probability Density function (PDF) of a 2D pose as a Gaussian with a mean and the inverse of the c...
bool operator==(const CPoint< DERIVEDCLASS, DIM > &p1, const CPoint< DERIVEDCLASS, DIM > &p2)
Virtual base class for "archives": classes abstracting I/O streams.
CPose2D mean
The mean value.
void drawGaussianMultivariate(std::vector< T > &out_result, const MATRIX &cov, const std::vector< T > *mean=nullptr)
Generate multidimensional random samples according to a given covariance matrix.
A class used to store a 2D pose, including the 2D coordinate point and a heading (phi) angle...
A class used to store a 3D pose (a 3D translation + a rotation in 3D).
mrpt::vision::TStereoCalibResults out
static void jacobiansPoseComposition(const CPose2D &x, const CPose2D &u, mrpt::math::CMatrixDouble33 &df_dx, mrpt::math::CMatrixDouble33 &df_du, const bool compute_df_dx=true, const bool compute_df_du=true)
This static method computes the pose composition Jacobians, with these formulas:
void readTo(CSerializable &obj)
void composeFrom(const CPose2D &A, const CPose2D &B)
Makes .
Declares a class that represents a Probability Density function (PDF) of a 3D pose as a Gaussian des...
double mean(const CONTAINER &v)
Computes the mean value of a vector.
EIGEN_MAP asEigen()
Get as an Eigen-compatible Eigen::Map object.
void serializeTo(mrpt::serialization::CArchive &out) const override
Pure virtual method for writing (serializing) to an abstract archive.
void drawSingleSample(CPose2D &outPart) const override
Draws a single sample from the distribution.
FILE * fopen(const char *fileName, const char *mode) noexcept
An OS-independent version of fopen.
uint8_t serializeGetVersion() const override
Must return the current versioning number of the object.
#define SCHEMA_SERIALIZE_DATATYPE_VERSION(ser_version)
For use inside all serializeTo(CSchemeArchiveBase) methods.
CRandomGenerator & getRandomGenerator()
A static instance of a CRandomGenerator class, for use in single-thread applications.
double normalPDF(double x, double mu, double std)
Evaluates the univariate normal (Gaussian) distribution at a given point "x".
EIGEN_MAP asEigen()
Get as an Eigen-compatible Eigen::Map object.
void inverseComposition(const CPosePDFGaussianInf &x, const CPosePDFGaussianInf &ref)
Set , computing the mean using the "-" operator and the covariances through the corresponding Jacobi...
void serializeFrom(mrpt::serialization::CArchive &in, uint8_t serial_version) override
Pure virtual method for reading (deserializing) from an abstract archive.
double phi
Orientation (rads)
Declares a class that represents a Probability Density Function (PDF) of a 3D pose (6D actually)...
void changeCoordinatesReference(const CPose3D &newReferenceBase) override
this = p (+) this.
mrpt::math::CMatrixDouble33 cov_inv
The inverse of the 3x3 covariance matrix (the "information" matrix)
void normalizePhi()
Forces "phi" to be in the range [-pi,pi];.
double mahalanobisDistanceTo(const CPosePDFGaussianInf &theOther)
Computes the Mahalanobis distance between the centers of two Gaussians.
#define MRPT_UNUSED_PARAM(a)
Determines whether this is an X86 or AMD64 platform.
void multiply_HCHt(const MAT_H &H, const MAT_C &C, MAT_R &R, bool accumResultInOutput=false)
R = H * C * H^t.