41 q0[0] * q1[0] + q0[1] * q1[1] + q0[2] * q1[2] + q0[3] * q1[3];
43 if (std::abs(cosHalfTheta) >= 1.0)
48 bool reverse_q1 =
false;
52 cosHalfTheta = -cosHalfTheta;
55 const double halfTheta = acos(cosHalfTheta);
56 const double sinHalfTheta = std::sqrt(1.0 -
mrpt::square(cosHalfTheta));
59 if (std::abs(sinHalfTheta) < 0.001)
62 for (
int i = 0; i < 4; i++) q[i] = (1 - t) * q0[i] + t * q1[i];
64 for (
int i = 0; i < 4; i++) q[i] = (1 - t) * q0[i] - t * q1[i];
67 const double A = sin((1 - t) * halfTheta) / sinHalfTheta;
68 const double B = sin(t * halfTheta) / sinHalfTheta;
70 for (
int i = 0; i < 4; i++) q[i] =
A * q0[i] + B * q1[i];
72 for (
int i = 0; i < 4; i++) q[i] =
A * q0[i] - B * q1[i];
83 void slerp(
const TPose3D& q0,
const TPose3D& q1,
const double t, TPose3D& p);
void slerp_ypr(const mrpt::math::TPose3D &q0, const mrpt::math::TPose3D &q1, const double t, mrpt::math::TPose3D &p)
void slerp(const CQuaternion< T > &q0, const CQuaternion< T > &q1, const double t, CQuaternion< T > &q)
SLERP interpolation between two quaternions.
This base provides a set of functions for maths stuff.
return_t square(const num_t x)
Inline function for the square of a number.
#define ASSERTDEB_(f)
Defines an assertion mechanism - only when compiled in debug.
Lightweight 3D pose (three spatial coordinates, plus three angular coordinates).
A quaternion, which can represent a 3D rotation as pair , with a real part "r" and a 3D vector ...