Main MRPT website > C++ reference for MRPT 1.5.6
List of all members | Public Types | Public Member Functions | Static Public Member Functions | Public Attributes | Static Public Attributes
mrpt::maps::CBeacon Class Referenceabstract

Detailed Description

The class for storing individual "beacon landmarks" under a variety of 3D position PDF distributions.

This class is used for storage within the class CBeaconMap. The class implements the same methods than the interface "CPointPDF", and invoking them actually becomes a mapping into the methods of the current PDF representation of the beacon, selectable by means of "m_typePDF"

See Also
CBeaconMap, CPointPDFSOG

Definition at line 40 of file maps/CBeacon.h.

#include <mrpt/maps/CBeacon.h>

Inheritance diagram for mrpt::maps::CBeacon:
Inheritance graph

Public Types

enum  TTypePDF { pdfMonteCarlo = 0, pdfGauss, pdfSOG }
 See m_typePDF. More...
 
typedef int64_t TBeaconID
 The type for the IDs of landmarks. More...
 
enum  { is_3D_val = 1 }
 
enum  { is_PDF_val = 1 }
 
typedef CPoint3D type_value
 The type of the state the PDF represents. More...
 
typedef
CProbabilityDensityFunction
< CPoint3D, STATE_LEN > 
self_t
 

Public Member Functions

voidoperator new (size_t size)
 
voidoperator new[] (size_t size)
 
void operator delete (void *ptr) throw ()
 
void operator delete[] (void *ptr) throw ()
 
void operator delete (void *memory, void *ptr) throw ()
 
voidoperator new (size_t size, const std::nothrow_t &) throw ()
 
void operator delete (void *ptr, const std::nothrow_t &) throw ()
 
 CBeacon ()
 Default constructor. More...
 
virtual ~CBeacon ()
 Virtual destructor. More...
 
void getMean (mrpt::poses::CPoint3D &mean_point) const MRPT_OVERRIDE
 Returns an estimate of the point, (the mean, or mathematical expectation of the PDF). More...
 
void getCovarianceAndMean (mrpt::math::CMatrixDouble33 &cov, mrpt::poses::CPoint3D &mean_point) const MRPT_OVERRIDE
 Returns an estimate of the point covariance matrix (3x3 cov matrix) and the mean, both at once. More...
 
void copyFrom (const mrpt::poses::CPointPDF &o) MRPT_OVERRIDE
 Copy operator, translating if necesary (for example, between particles and gaussian representations) More...
 
void saveToTextFile (const std::string &file) const MRPT_OVERRIDE
 Save PDF's particles to a text file. More...
 
void changeCoordinatesReference (const mrpt::poses::CPose3D &newReferenceBase) MRPT_OVERRIDE
 this = p (+) this. More...
 
void getAs3DObject (mrpt::opengl::CSetOfObjectsPtr &outObj) const
 Saves a 3D representation of the beacon into a given OpenGL scene. More...
 
void getAsMatlabDrawCommands (utils::CStringList &out_Str) const
 Gets a set of MATLAB commands which draw the current state of the beacon: More...
 
void drawSingleSample (mrpt::poses::CPoint3D &outSample) const MRPT_OVERRIDE
 Draw a sample from the pdf. More...
 
void bayesianFusion (const CPointPDF &p1, const CPointPDF &p2, const double &minMahalanobisDistToDrop=0) MRPT_OVERRIDE
 Bayesian fusion of two point distributions (product of two distributions->new distribution), then save the result in this object (WARNING: See implementing classes to see classes that can and cannot be mixtured!) More...
 
void generateObservationModelDistribution (const float &sensedRange, mrpt::poses::CPointPDFSOG &outPDF, const CBeaconMap *myBeaconMap, const mrpt::poses::CPoint3D &sensorPntOnRobot, const mrpt::poses::CPoint3D &centerPoint=mrpt::poses::CPoint3D(0, 0, 0), const float &maxDistanceFromCenter=0) const
 Compute the observation model p(z_t|x_t) for a given observation (range value), and return it as an approximate SOG. More...
 
virtual void bayesianFusion (const CPointPDF &p1, const CPointPDF &p2, const double &minMahalanobisDistToDrop=0)=0
 Bayesian fusion of two point distributions (product of two distributions->new distribution), then save the result in this object (WARNING: See implementing classes to see classes that can and cannot be mixtured!) More...
 
template<class OPENGL_SETOFOBJECTSPTR >
void getAs3DObject (OPENGL_SETOFOBJECTSPTR &out_obj) const
 Returns a 3D representation of this PDF (it doesn't clear the current contents of out_obj, but append new OpenGL objects to that list) More...
 
template<class OPENGL_SETOFOBJECTSPTR , class OPENGL_SETOFOBJECTS >
OPENGL_SETOFOBJECTSPTR getAs3DObject () const
 Returns a 3D representation of this PDF. More...
 
virtual mxArraywriteToMatlab () const
 Introduces a pure virtual method responsible for writing to a mxArray Matlab object, typically a MATLAB struct whose contents are documented in each derived class. More...
 
mrpt::utils::CObjectPtr duplicateGetSmartPtr () const
 Returns a copy of the object, indepently of its class, as a smart pointer (the newly created object will exist as long as any copy of this smart pointer). More...
 
CObjectclone () const
 Cloning interface for smart pointers. More...
 
virtual void getMean (CPoint3D &mean_point) const =0
 Returns the mean, or mathematical expectation of the probability density distribution (PDF). More...
 
virtual void getCovarianceAndMean (mrpt::math::CMatrixFixedNumeric< double, STATE_LEN, STATE_LEN > &cov, CPoint3D &mean_point) const =0
 Returns an estimate of the pose covariance matrix (STATE_LENxSTATE_LEN cov matrix) and the mean, both at once. More...
 
void getCovarianceDynAndMean (mrpt::math::CMatrixDouble &cov, CPoint3D &mean_point) const
 Returns an estimate of the pose covariance matrix (STATE_LENxSTATE_LEN cov matrix) and the mean, both at once. More...
 
CPoint3D getMeanVal () const
 Returns the mean, or mathematical expectation of the probability density distribution (PDF). More...
 
void getCovariance (mrpt::math::CMatrixDouble &cov) const
 Returns the estimate of the covariance matrix (STATE_LEN x STATE_LEN covariance matrix) More...
 
void getCovariance (mrpt::math::CMatrixFixedNumeric< double, STATE_LEN, STATE_LEN > &cov) const
 Returns the estimate of the covariance matrix (STATE_LEN x STATE_LEN covariance matrix) More...
 
mrpt::math::CMatrixFixedNumeric
< double, STATE_LEN, STATE_LEN > 
getCovariance () const
 Returns the estimate of the covariance matrix (STATE_LEN x STATE_LEN covariance matrix) More...
 
virtual bool isInfType () const
 Returns whether the class instance holds the uncertainty in covariance or information form. More...
 
virtual void getInformationMatrix (mrpt::math::CMatrixFixedNumeric< double, STATE_LEN, STATE_LEN > &inf) const
 Returns the information (inverse covariance) matrix (a STATE_LEN x STATE_LEN matrix) Unless reimplemented in derived classes, this method first reads the covariance, then invert it. More...
 
virtual void drawSingleSample (CPoint3D &outPart) const =0
 Draws a single sample from the distribution. More...
 
virtual void drawManySamples (size_t N, std::vector< mrpt::math::CVectorDouble > &outSamples) const
 Draws a number of samples from the distribution, and saves as a list of 1xSTATE_LEN vectors, where each row contains a (x,y,z,yaw,pitch,roll) datum. More...
 
double getCovarianceEntropy () const
 Compute the entropy of the estimated covariance matrix. More...
 

Static Public Member Functions

static voidoperator new (size_t size, void *ptr)
 
static void generateRingSOG (const float &sensedRange, mrpt::poses::CPointPDFSOG &outPDF, const CBeaconMap *myBeaconMap, const mrpt::poses::CPoint3D &sensorPnt, const mrpt::math::CMatrixDouble33 *covarianceCompositionToAdd=NULL, bool clearPreviousContentsOutPDF=true, const mrpt::poses::CPoint3D &centerPoint=mrpt::poses::CPoint3D(0, 0, 0), const float &maxDistanceFromCenter=0)
 This static method returns a SOG with ring-shape (or as a 3D sphere) that can be used to initialize a beacon if observed the first time. More...
 
static bool is_3D ()
 
static bool is_PDF ()
 

Public Attributes

TTypePDF m_typePDF
 Which one of the different 3D point PDF is currently used in this object: montecarlo, gaussian, or a sum of gaussians. More...
 
mrpt::poses::CPointPDFParticles m_locationMC
 The individual PDF, if m_typePDF=pdfMonteCarlo (publicly accesible for ease of use, but the CPointPDF interface is also implemented in CBeacon). More...
 
mrpt::poses::CPointPDFGaussian m_locationGauss
 The individual PDF, if m_typePDF=pdfGauss (publicly accesible for ease of use, but the CPointPDF interface is also implemented in CBeacon). More...
 
mrpt::poses::CPointPDFSOG m_locationSOG
 The individual PDF, if m_typePDF=pdfSOG (publicly accesible for ease of use, but the CPointPDF interface is also implemented in CBeacon). More...
 
TBeaconID m_ID
 An ID for the landmark (see details next...) This ID was introduced in the version 3 of this class (21/NOV/2006), and its aim is to provide a way for easily establishing correspondences between landmarks detected in sequential image frames. More...
 

Static Public Attributes

static const
mrpt::utils::TRuntimeClassId 
classCObject
 
static const size_t state_length
 The length of the variable, for example, 3 for a 3D point, 6 for a 3D pose (x y z yaw pitch roll). More...
 
RTTI stuff
static const
mrpt::utils::TRuntimeClassId 
classCPointPDF
 
RTTI stuff
static const
mrpt::utils::TRuntimeClassId 
classCSerializable
 

Protected Member Functions

CSerializable virtual methods
void writeToStream (mrpt::utils::CStream &out, int *getVersion) const
 Introduces a pure virtual method responsible for writing to a CStream. More...
 
void readFromStream (mrpt::utils::CStream &in, int version)
 Introduces a pure virtual method responsible for loading from a CStream This can not be used directly be users, instead use "stream >> object;" for reading it from a stream or "stream >> object_ptr;" if the class is unknown apriori. More...
 

RTTI stuff

typedef CBeaconPtr Ptr
 
typedef CBeaconPtr ConstPtr
 
static mrpt::utils::CLASSINIT _init_CBeacon
 
static mrpt::utils::TRuntimeClassId classCBeacon
 
static const
mrpt::utils::TRuntimeClassId
classinfo
 
static const
mrpt::utils::TRuntimeClassId
_GetBaseClass ()
 
virtual const
mrpt::utils::TRuntimeClassId
GetRuntimeClass () const
 Returns information about the class of an object in runtime. More...
 
virtual mrpt::utils::CObjectduplicate () const
 Returns a copy of the object, indepently of its class. More...
 
static mrpt::utils::CObjectCreateObject ()
 
static CBeaconPtr Create ()
 

Member Typedef Documentation

typedef CBeaconPtr mrpt::maps::CBeacon::ConstPtr

Definition at line 43 of file maps/CBeacon.h.

typedef CBeaconPtr mrpt::maps::CBeacon::Ptr

A typedef for the associated smart pointer

Definition at line 43 of file maps/CBeacon.h.

typedef CProbabilityDensityFunction<CPoint3D , STATE_LEN> mrpt::utils::CProbabilityDensityFunction< CPoint3D , STATE_LEN >::self_t
inherited

Definition at line 33 of file CProbabilityDensityFunction.h.

The type for the IDs of landmarks.

Definition at line 48 of file maps/CBeacon.h.

typedef CPoint3D mrpt::utils::CProbabilityDensityFunction< CPoint3D , STATE_LEN >::type_value
inherited

The type of the state the PDF represents.

Definition at line 32 of file CProbabilityDensityFunction.h.

Member Enumeration Documentation

anonymous enum
inherited
Enumerator
is_3D_val 

Definition at line 55 of file CPointPDF.h.

anonymous enum
inherited
Enumerator
is_PDF_val 

Definition at line 57 of file CPointPDF.h.

See m_typePDF.

Enumerator
pdfMonteCarlo 
pdfGauss 
pdfSOG 

Definition at line 52 of file maps/CBeacon.h.

Constructor & Destructor Documentation

CBeacon::CBeacon ( )

Default constructor.

Definition at line 39 of file CBeacon.cpp.

CBeacon::~CBeacon ( )
virtual

Virtual destructor.

Definition at line 51 of file CBeacon.cpp.

Member Function Documentation

static const mrpt::utils::TRuntimeClassId* mrpt::maps::CBeacon::_GetBaseClass ( )
staticprotected
virtual void mrpt::poses::CPointPDF::bayesianFusion ( const CPointPDF p1,
const CPointPDF p2,
const double &  minMahalanobisDistToDrop = 0 
)
pure virtualinherited

Bayesian fusion of two point distributions (product of two distributions->new distribution), then save the result in this object (WARNING: See implementing classes to see classes that can and cannot be mixtured!)

Parameters
p1The first distribution to fuse
p2The second distribution to fuse
minMahalanobisDistToDropIf set to different of 0, the result of very separate Gaussian modes (that will result in negligible components) in SOGs will be dropped to reduce the number of modes in the output.

Implemented in mrpt::poses::CPointPDFSOG, mrpt::poses::CPointPDFGaussian, and mrpt::poses::CPointPDFParticles.

void CBeacon::bayesianFusion ( const CPointPDF p1,
const CPointPDF p2,
const double &  minMahalanobisDistToDrop = 0 
)

Bayesian fusion of two point distributions (product of two distributions->new distribution), then save the result in this object (WARNING: See implementing classes to see classes that can and cannot be mixtured!)

Parameters
p1The first distribution to fuse
p2The second distribution to fuse
minMahalanobisDistToDropIf set to different of 0, the result of very separate Gaussian modes (that will result in negligible components) in SOGs will be dropped to reduce the number of modes in the output.

Definition at line 130 of file CBeacon.cpp.

References MRPT_END, MRPT_START, and THROW_EXCEPTION.

void CBeacon::changeCoordinatesReference ( const mrpt::poses::CPose3D newReferenceBase)
virtual

this = p (+) this.

This can be used to convert a PDF from local coordinates to global, providing the point (newReferenceBase) from which "to project" the current pdf. Result PDF substituted the currently stored one in the object.

Implements mrpt::utils::CProbabilityDensityFunction< CPoint3D, 3 >.

Definition at line 196 of file CBeacon.cpp.

References MRPT_END, MRPT_START, and THROW_EXCEPTION.

CObject* mrpt::utils::CObject::clone ( ) const
inlineinherited

Cloning interface for smart pointers.

Definition at line 143 of file CObject.h.

void CBeacon::copyFrom ( const mrpt::poses::CPointPDF o)
virtual

Copy operator, translating if necesary (for example, between particles and gaussian representations)

Implements mrpt::poses::CPointPDF.

Definition at line 164 of file CBeacon.cpp.

References MRPT_END, MRPT_START, and THROW_EXCEPTION.

static CBeaconPtr mrpt::maps::CBeacon::Create ( )
static
static mrpt::utils::CObject* mrpt::maps::CBeacon::CreateObject ( )
static
virtual void mrpt::utils::CProbabilityDensityFunction< CPoint3D , STATE_LEN >::drawManySamples ( size_t  N,
std::vector< mrpt::math::CVectorDouble > &  outSamples 
) const
inlinevirtualinherited

Draws a number of samples from the distribution, and saves as a list of 1xSTATE_LEN vectors, where each row contains a (x,y,z,yaw,pitch,roll) datum.

This base method just call N times to drawSingleSample, but derived classes should implemented optimized method for each particular PDF.

Definition at line 125 of file CProbabilityDensityFunction.h.

void CBeacon::drawSingleSample ( mrpt::poses::CPoint3D outSample) const

Draw a sample from the pdf.

Definition at line 147 of file CBeacon.cpp.

References MRPT_END, MRPT_START, and THROW_EXCEPTION.

virtual void mrpt::utils::CProbabilityDensityFunction< CPoint3D , STATE_LEN >::drawSingleSample ( CPoint3D &  outPart) const
pure virtualinherited

Draws a single sample from the distribution.

virtual mrpt::utils::CObject* mrpt::maps::CBeacon::duplicate ( ) const
virtual

Returns a copy of the object, indepently of its class.

Implements mrpt::utils::CObject.

mrpt::utils::CObjectPtr mrpt::utils::CObject::duplicateGetSmartPtr ( ) const
inlineinherited

Returns a copy of the object, indepently of its class, as a smart pointer (the newly created object will exist as long as any copy of this smart pointer).

Definition at line 140 of file CObject.h.

Referenced by mrpt::obs::CRawlog::addActions(), mrpt::slam::CIncrementalMapPartitioner::addMapFrame(), and mrpt::obs::CRawlog::addObservations().

void CBeacon::generateObservationModelDistribution ( const float &  sensedRange,
mrpt::poses::CPointPDFSOG outPDF,
const CBeaconMap myBeaconMap,
const mrpt::poses::CPoint3D sensorPntOnRobot,
const mrpt::poses::CPoint3D centerPoint = mrpt::poses::CPoint3D(0,0,0),
const float &  maxDistanceFromCenter = 0 
) const

Compute the observation model p(z_t|x_t) for a given observation (range value), and return it as an approximate SOG.

Note that if the beacon is a SOG itself, the number of gaussian modes will be square. As a speed-up, if a "center point"+"maxDistanceFromCenter" is supplied (maxDistanceFromCenter!=0), those modes farther than this sphere will be discarded. Parameters such as the stdSigma of the sensor are gathered from "myBeaconMap" The result is one "ring" for each Gaussian mode that represent the beacon position in this object. The position of the sensor on the robot is used to shift the resulting densities such as they represent the position of the robot, not the sensor.

See Also
CBeaconMap::insertionOptions, generateRingSOG

Definition at line 366 of file CBeacon.cpp.

References ASSERT_, mrpt::poses::CPointPDFSOG::clear(), generateRingSOG(), mrpt::poses::CPointPDFSOG::get(), mrpt::poses::CPointPDFSOG::TGaussianMode::log_w, MRPT_END, MRPT_START, mrpt::poses::CPointPDFSOG::push_back(), mrpt::poses::CPointPDFSOG::size(), mrpt::poses::CPointPDFSOG::TGaussianMode::val, mrpt::poses::CPoseOrPoint< DERIVEDCLASS >::x(), and mrpt::poses::CPoseOrPoint< DERIVEDCLASS >::y().

void CBeacon::generateRingSOG ( const float &  sensedRange,
mrpt::poses::CPointPDFSOG outPDF,
const CBeaconMap myBeaconMap,
const mrpt::poses::CPoint3D sensorPnt,
const mrpt::math::CMatrixDouble33 covarianceCompositionToAdd = NULL,
bool  clearPreviousContentsOutPDF = true,
const mrpt::poses::CPoint3D centerPoint = mrpt::poses::CPoint3D(0,0,0),
const float &  maxDistanceFromCenter = 0 
)
static

This static method returns a SOG with ring-shape (or as a 3D sphere) that can be used to initialize a beacon if observed the first time.

sensorPnt is the center of the ring/sphere, i.e. the absolute position of the range sensor. If clearPreviousContentsOutPDF=false, the SOG modes will be added to the current contents of outPDF If the 3x3 matrix covarianceCompositionToAdd is provided, it will be add to every Gaussian (to model the composition of uncertainty).

See Also
generateObservationModelDistribution

Definition at line 432 of file CBeacon.cpp.

References ASSERT_, mrpt::poses::CPointPDFGaussian::cov, DEG2RAD, mrpt::poses::CPoseOrPoint< DERIVEDCLASS >::distanceTo(), mrpt::math::generateAxisBaseFromDirection(), mrpt::poses::CPointPDFSOG::get(), mrpt::maps::CBeaconMap::insertionOptions, mrpt::maps::CBeaconMap::likelihoodOptions, mrpt::poses::CPointPDFSOG::TGaussianMode::log_w, M_2PI, M_2PIf, mrpt::maps::CBeaconMap::TInsertionOptions::maxElevation_deg, mrpt::poses::CPointPDFGaussian::mean, mrpt::maps::CBeaconMap::TInsertionOptions::minElevation_deg, MRPT_END, MRPT_START, mrpt::maps::CBeaconMap::TLikelihoodOptions::rangeStd, mrpt::poses::CPointPDFSOG::resize(), mrpt::poses::CPointPDFSOG::size(), mrpt::maps::CBeaconMap::TInsertionOptions::SOG_maxDistBetweenGaussians, mrpt::maps::CBeaconMap::TInsertionOptions::SOG_separationConstant, mrpt::math::square(), mrpt::poses::CPointPDFSOG::TGaussianMode::val, mrpt::poses::CPoseOrPoint< DERIVEDCLASS >::x(), and mrpt::poses::CPoseOrPoint< DERIVEDCLASS >::y().

Referenced by generateObservationModelDistribution(), and mrpt::maps::CBeaconMap::internal_insertObservation().

template<class OPENGL_SETOFOBJECTSPTR >
void mrpt::poses::CPointPDF::getAs3DObject ( OPENGL_SETOFOBJECTSPTR &  out_obj) const
inlineinherited

Returns a 3D representation of this PDF (it doesn't clear the current contents of out_obj, but append new OpenGL objects to that list)

Note
Needs the mrpt-opengl library, and using mrpt::opengl::CSetOfObjectsPtr as template argument.
By default, ellipsoids for the confidence intervals of "q=3" are drawn; for more mathematical details, see CGeneralizedEllipsoidTemplate::setQuantiles()

Definition at line 65 of file CPointPDF.h.

References mrpt::opengl::posePDF2opengl().

template<class OPENGL_SETOFOBJECTSPTR , class OPENGL_SETOFOBJECTS >
OPENGL_SETOFOBJECTSPTR mrpt::poses::CPointPDF::getAs3DObject ( ) const
inlineinherited

Returns a 3D representation of this PDF.

Note
Needs the mrpt-opengl library, and using mrpt::opengl::CSetOfObjectsPtr as template argument.

Definition at line 74 of file CPointPDF.h.

References mrpt::opengl::posePDF2opengl().

void CBeacon::getAs3DObject ( mrpt::opengl::CSetOfObjectsPtr &  outObj) const
void CBeacon::getAsMatlabDrawCommands ( utils::CStringList out_Str) const
void mrpt::utils::CProbabilityDensityFunction< CPoint3D , STATE_LEN >::getCovariance ( mrpt::math::CMatrixDouble cov) const
inlineinherited

Returns the estimate of the covariance matrix (STATE_LEN x STATE_LEN covariance matrix)

See Also
getMean, getCovarianceAndMean, getInformationMatrix

Definition at line 68 of file CProbabilityDensityFunction.h.

void mrpt::utils::CProbabilityDensityFunction< CPoint3D , STATE_LEN >::getCovariance ( mrpt::math::CMatrixFixedNumeric< double, STATE_LEN, STATE_LEN > &  cov) const
inlineinherited

Returns the estimate of the covariance matrix (STATE_LEN x STATE_LEN covariance matrix)

See Also
getMean, getCovarianceAndMean, getInformationMatrix

Definition at line 77 of file CProbabilityDensityFunction.h.

mrpt::math::CMatrixFixedNumeric<double,STATE_LEN,STATE_LEN> mrpt::utils::CProbabilityDensityFunction< CPoint3D , STATE_LEN >::getCovariance ( ) const
inlineinherited

Returns the estimate of the covariance matrix (STATE_LEN x STATE_LEN covariance matrix)

See Also
getMean, getInformationMatrix

Definition at line 86 of file CProbabilityDensityFunction.h.

virtual void mrpt::utils::CProbabilityDensityFunction< CPoint3D , STATE_LEN >::getCovarianceAndMean ( mrpt::math::CMatrixFixedNumeric< double, STATE_LEN, STATE_LEN > &  cov,
CPoint3D &  mean_point 
) const
pure virtualinherited

Returns an estimate of the pose covariance matrix (STATE_LENxSTATE_LEN cov matrix) and the mean, both at once.

See Also
getMean, getInformationMatrix
void CBeacon::getCovarianceAndMean ( mrpt::math::CMatrixDouble33 cov,
mrpt::poses::CPoint3D mean_point 
) const

Returns an estimate of the point covariance matrix (3x3 cov matrix) and the mean, both at once.

See Also
getMean

Definition at line 114 of file CBeacon.cpp.

References MRPT_END, MRPT_START, and THROW_EXCEPTION.

void mrpt::utils::CProbabilityDensityFunction< CPoint3D , STATE_LEN >::getCovarianceDynAndMean ( mrpt::math::CMatrixDouble cov,
CPoint3D &  mean_point 
) const
inlineinherited

Returns an estimate of the pose covariance matrix (STATE_LENxSTATE_LEN cov matrix) and the mean, both at once.

See Also
getMean, getInformationMatrix

Definition at line 48 of file CProbabilityDensityFunction.h.

double mrpt::utils::CProbabilityDensityFunction< CPoint3D , STATE_LEN >::getCovarianceEntropy ( ) const
inlineinherited

Compute the entropy of the estimated covariance matrix.

See Also
http://en.wikipedia.org/wiki/Multivariate_normal_distribution#Entropy

Definition at line 144 of file CProbabilityDensityFunction.h.

virtual void mrpt::utils::CProbabilityDensityFunction< CPoint3D , STATE_LEN >::getInformationMatrix ( mrpt::math::CMatrixFixedNumeric< double, STATE_LEN, STATE_LEN > &  inf) const
inlinevirtualinherited

Returns the information (inverse covariance) matrix (a STATE_LEN x STATE_LEN matrix) Unless reimplemented in derived classes, this method first reads the covariance, then invert it.

See Also
getMean, getCovarianceAndMean

Definition at line 106 of file CProbabilityDensityFunction.h.

virtual void mrpt::utils::CProbabilityDensityFunction< CPoint3D , STATE_LEN >::getMean ( CPoint3D &  mean_point) const
pure virtualinherited

Returns the mean, or mathematical expectation of the probability density distribution (PDF).

See Also
getCovarianceAndMean, getInformationMatrix
void CBeacon::getMean ( mrpt::poses::CPoint3D mean_point) const

Returns an estimate of the point, (the mean, or mathematical expectation of the PDF).

See Also
getCovariance

Definition at line 98 of file CBeacon.cpp.

References MRPT_END, MRPT_START, and THROW_EXCEPTION.

CPoint3D mrpt::utils::CProbabilityDensityFunction< CPoint3D , STATE_LEN >::getMeanVal ( ) const
inlineinherited

Returns the mean, or mathematical expectation of the probability density distribution (PDF).

See Also
getCovariance, getInformationMatrix

Definition at line 58 of file CProbabilityDensityFunction.h.

virtual const mrpt::utils::TRuntimeClassId* mrpt::maps::CBeacon::GetRuntimeClass ( ) const
virtual

Returns information about the class of an object in runtime.

Reimplemented from mrpt::poses::CPointPDF.

static bool mrpt::poses::CPointPDF::is_3D ( )
inlinestaticinherited

Definition at line 56 of file CPointPDF.h.

static bool mrpt::poses::CPointPDF::is_PDF ( )
inlinestaticinherited

Definition at line 58 of file CPointPDF.h.

virtual bool mrpt::utils::CProbabilityDensityFunction< CPoint3D , STATE_LEN >::isInfType ( ) const
inlinevirtualinherited

Returns whether the class instance holds the uncertainty in covariance or information form.

Note
By default this is going to be covariance form. *Inf classes (e.g. CPosePDFGaussianInf) store it in information form.
See Also
mrpt::traits::is_inf_type

Definition at line 100 of file CProbabilityDensityFunction.h.

void mrpt::maps::CBeacon::operator delete ( void memory,
void ptr 
)
throw (
)
inline

Definition at line 43 of file maps/CBeacon.h.

void mrpt::maps::CBeacon::operator delete ( void ptr,
const std::nothrow_t &   
)
throw (
)
inline

Definition at line 43 of file maps/CBeacon.h.

void mrpt::maps::CBeacon::operator delete ( void ptr)
throw (
)
inline

Definition at line 43 of file maps/CBeacon.h.

void mrpt::maps::CBeacon::operator delete[] ( void ptr)
throw (
)
inline

Definition at line 43 of file maps/CBeacon.h.

static void* mrpt::maps::CBeacon::operator new ( size_t  size,
void ptr 
)
inlinestatic

Definition at line 43 of file maps/CBeacon.h.

void* mrpt::maps::CBeacon::operator new ( size_t  size,
const std::nothrow_t &   
)
throw (
)
inline

Definition at line 43 of file maps/CBeacon.h.

void* mrpt::maps::CBeacon::operator new ( size_t  size)
inline

Definition at line 43 of file maps/CBeacon.h.

void* mrpt::maps::CBeacon::operator new[] ( size_t  size)
inline

Definition at line 43 of file maps/CBeacon.h.

void CBeacon::readFromStream ( mrpt::utils::CStream in,
int  version 
)
protectedvirtual

Introduces a pure virtual method responsible for loading from a CStream This can not be used directly be users, instead use "stream >> object;" for reading it from a stream or "stream >> object_ptr;" if the class is unknown apriori.

Parameters
inThe input binary stream where the object data must read from.
versionThe version of the object stored in the stream: use this version number in your code to know how to read the incoming data.
Exceptions
std::exceptionOn any error, see CStream::ReadBuffer
See Also
CStream

Implements mrpt::utils::CSerializable.

Definition at line 77 of file CBeacon.cpp.

References MRPT_THROW_UNKNOWN_SERIALIZATION_VERSION.

void CBeacon::saveToTextFile ( const std::string file) const
virtual

Save PDF's particles to a text file.

See derived classes for more information about the format of generated files

Implements mrpt::utils::CProbabilityDensityFunction< CPoint3D, 3 >.

Definition at line 180 of file CBeacon.cpp.

References MRPT_END, MRPT_START, and THROW_EXCEPTION.

virtual mxArray* mrpt::utils::CSerializable::writeToMatlab ( ) const
inlinevirtualinherited

Introduces a pure virtual method responsible for writing to a mxArray Matlab object, typically a MATLAB struct whose contents are documented in each derived class.

Returns
A new mxArray (caller is responsible of memory freeing) or NULL is class does not support conversion to MATLAB.

Definition at line 79 of file CSerializable.h.

void CBeacon::writeToStream ( mrpt::utils::CStream out,
int getVersion 
) const
protectedvirtual

Introduces a pure virtual method responsible for writing to a CStream.

This can not be used directly be users, instead use "stream << object;" for writing it to a stream.

Parameters
outThe output binary stream where object must be dumped.
getVersionIf NULL, the object must be dumped. If not, only the version of the object dump must be returned in this pointer. This enables the versioning of objects dumping and backward compatibility with previously stored data.
Exceptions
std::exceptionOn any error, see CStream::WriteBuffer
See Also
CStream

Implements mrpt::utils::CSerializable.

Definition at line 60 of file CBeacon.cpp.

Member Data Documentation

mrpt::utils::CLASSINIT mrpt::maps::CBeacon::_init_CBeacon
staticprotected

Definition at line 43 of file maps/CBeacon.h.

mrpt::utils::TRuntimeClassId mrpt::maps::CBeacon::classCBeacon
static

Definition at line 43 of file maps/CBeacon.h.

const mrpt::utils::TRuntimeClassId mrpt::utils::CObject::classCObject
staticinherited

Definition at line 128 of file CObject.h.

const mrpt::utils::TRuntimeClassId mrpt::poses::CPointPDF::classCPointPDF
staticinherited

Definition at line 40 of file CPointPDF.h.

const mrpt::utils::TRuntimeClassId mrpt::utils::CSerializable::classCSerializable
staticinherited

Definition at line 42 of file CSerializable.h.

const mrpt::utils::TRuntimeClassId* mrpt::maps::CBeacon::classinfo
static

Definition at line 43 of file maps/CBeacon.h.

TBeaconID mrpt::maps::CBeacon::m_ID

An ID for the landmark (see details next...) This ID was introduced in the version 3 of this class (21/NOV/2006), and its aim is to provide a way for easily establishing correspondences between landmarks detected in sequential image frames.

Thus, the management of this field should be:

  • In 'servers' (classes/modules/... that detect landmarks from images): A different ID must be assigned to every landmark (e.g. a sequential counter), BUT only in the case of being sure of the correspondence of one landmark with another one in the past (e.g. tracking).
  • In 'clients': This field can be ignored, but if it is used, the advantage is solving the correspondence between landmarks detected in consequentive instants of time: Two landmarks with the same ID correspond to the same physical feature, BUT it should not be expected the inverse to be always true.

Note that this field is never fill out automatically, it must be set by the programmer if used.

Definition at line 75 of file maps/CBeacon.h.

Referenced by mrpt::maps::CBeaconMap::internal_insertObservation().

mrpt::poses::CPointPDFGaussian mrpt::maps::CBeacon::m_locationGauss

The individual PDF, if m_typePDF=pdfGauss (publicly accesible for ease of use, but the CPointPDF interface is also implemented in CBeacon).

Definition at line 62 of file maps/CBeacon.h.

Referenced by mrpt::maps::CBeaconMap::internal_computeObservationLikelihood(), and mrpt::maps::CBeaconMap::internal_insertObservation().

mrpt::poses::CPointPDFParticles mrpt::maps::CBeacon::m_locationMC

The individual PDF, if m_typePDF=pdfMonteCarlo (publicly accesible for ease of use, but the CPointPDF interface is also implemented in CBeacon).

Definition at line 60 of file maps/CBeacon.h.

Referenced by mrpt::maps::CBeaconMap::internal_computeObservationLikelihood(), and mrpt::maps::CBeaconMap::internal_insertObservation().

mrpt::poses::CPointPDFSOG mrpt::maps::CBeacon::m_locationSOG

The individual PDF, if m_typePDF=pdfSOG (publicly accesible for ease of use, but the CPointPDF interface is also implemented in CBeacon).

Definition at line 64 of file maps/CBeacon.h.

Referenced by mrpt::maps::CBeaconMap::internal_computeObservationLikelihood(), and mrpt::maps::CBeaconMap::internal_insertObservation().

TTypePDF mrpt::maps::CBeacon::m_typePDF

Which one of the different 3D point PDF is currently used in this object: montecarlo, gaussian, or a sum of gaussians.

See Also
m_location

Definition at line 57 of file maps/CBeacon.h.

Referenced by mrpt::maps::CBeaconMap::internal_computeObservationLikelihood(), and mrpt::maps::CBeaconMap::internal_insertObservation().

const size_t mrpt::utils::CProbabilityDensityFunction< CPoint3D , STATE_LEN >::state_length
staticinherited

The length of the variable, for example, 3 for a 3D point, 6 for a 3D pose (x y z yaw pitch roll).

Definition at line 31 of file CProbabilityDensityFunction.h.

Referenced by mrpt::poses::CPointPDFGaussian::productIntegralWith(), and mrpt::poses::CPointPDFGaussian::productIntegralWith2D().




Page generated by Doxygen 1.8.6 for MRPT 1.5.6 Git: 4c65e84 Tue Apr 24 08:18:17 2018 +0200 at mar abr 24 08:26:17 CEST 2018