Main MRPT website > C++ reference for MRPT 1.5.6
maps/CLandmarksMap.h
Go to the documentation of this file.
1 /* +---------------------------------------------------------------------------+
2  | Mobile Robot Programming Toolkit (MRPT) |
3  | http://www.mrpt.org/ |
4  | |
5  | Copyright (c) 2005-2017, Individual contributors, see AUTHORS file |
6  | See: http://www.mrpt.org/Authors - All rights reserved. |
7  | Released under BSD License. See details in http://www.mrpt.org/License |
8  +---------------------------------------------------------------------------+ */
9 #ifndef CLandmarksMap_H
10 #define CLandmarksMap_H
11 
13 #include <mrpt/maps/CMetricMap.h>
14 #include <mrpt/maps/CLandmark.h>
20 #include <mrpt/math/CMatrix.h>
23 #include <mrpt/obs/obs_frwds.h>
24 
25 namespace mrpt
26 {
27 namespace maps
28 {
29  namespace internal { typedef std::vector<CLandmark> TSequenceLandmarks; }
30 
32 
33  /** A class for storing a map of 3D probabilistic landmarks.
34  * <br>
35  * Currently these types of landmarks are defined: (see mrpt::maps::CLandmark)
36  * - For "visual landmarks" from images: features with associated descriptors.
37  * - For laser scanners: each of the range measuremnts, as "occupancy" landmarks.
38  * - For grid maps: "Panoramic descriptor" feature points.
39  * - For range-only localization and SLAM: Beacons. It is also supported the simulation of expected beacon-to-sensor readings, observation likelihood,...
40  * <br>
41  * <b>How to load landmarks from observations:</b><br>
42  * When invoking CLandmarksMap::insertObservation(), the values in CLandmarksMap::insertionOptions will
43  * determinate the kind of landmarks that will be extracted and fused into the map. Supported feature
44  * extraction processes are listed next:
45  *
46  <table>
47  <tr> <td><b>Observation class:</b></td> <td><b>Generated Landmarks:</b></td> <td><b>Comments:</b></td> </tr>
48  <tr> <td>CObservationImage</td> <td>vlSIFT</td> <td>1) A SIFT feature is created for each SIFT detected in the image,
49  <br>2) Correspondences between SIFTs features and existing ones are finded by computeMatchingWith3DLandmarks,
50  <br>3) The corresponding feaures are fused, and the new ones added, with an initial uncertainty according to insertionOptions</td> </tr>
51  <tr> <td>CObservationStereoImages</td> <td>vlSIFT</td> <td> Each image is separately procesed by the method for CObservationImage observations </td> </tr>
52  <tr> <td>CObservationStereoImages</td> <td>vlColor</td> <td> TODO... </td> </tr>
53  <tr> <td>CObservation2DRangeScan</td> <td>glOccupancy</td> <td> A landmark is added for each range in the scan, with its appropiate covariance matrix derived from the jacobians matrixes. </td> </tr>
54  </table>
55  *
56  * \sa CMetricMap
57  * \ingroup mrpt_vision_grp
58  */
59  class VISION_IMPEXP CLandmarksMap : public mrpt::maps::CMetricMap
60  {
61  // This must be added to any CSerializable derived class:
63 
64  private:
65  void internal_clear() MRPT_OVERRIDE;
66  bool internal_insertObservation( const mrpt::obs::CObservation *obs, const mrpt::poses::CPose3D *robotPose = NULL ) MRPT_OVERRIDE;
67 
68  public:
69  /** Computes the (logarithmic) likelihood that a given observation was taken from a given pose in the world being modeled with this map.
70  *
71  * In the current implementation, this method behaves in a different way according to the nature of
72  * the observation's class:
73  * - "mrpt::obs::CObservation2DRangeScan": This calls "computeLikelihood_RSLC_2007".
74  * - "mrpt::obs::CObservationStereoImages": This calls "computeLikelihood_SIFT_LandmarkMap".
75  *
76  * \param takenFrom The robot's pose the observation is supposed to be taken from.
77  * \param obs The observation.
78  * \return This method returns a likelihood value > 0.
79  *
80  * \sa Used in particle filter algorithms, see: CMultiMetricMapPDF::update
81  */
82  double internal_computeObservationLikelihood( const mrpt::obs::CObservation *obs, const mrpt::poses::CPose3D &takenFrom ) MRPT_OVERRIDE;
83 
84 
85  static mrpt::utils::TColorf COLOR_LANDMARKS_IN_3DSCENES; //!< The color of landmark ellipsoids in CLandmarksMap::getAs3DObject
86 
87  typedef mrpt::maps::CLandmark landmark_type;
88 
89 
90  /** The list of landmarks: the wrapper class is just for maintaining the KD-Tree representation
91  */
93  {
94  private:
95  /** The actual list */
97 
98  /** A grid-map with the set of landmarks falling into each cell.
99  * \todo Use the KD-tree instead?
100  */
102 
103  /** Auxiliary variables used in "getLargestDistanceFromOrigin"
104  * \sa getLargestDistanceFromOrigin
105  */
107 
108  /** Auxiliary variables used in "getLargestDistanceFromOrigin"
109  * \sa getLargestDistanceFromOrigin
110  */
112 
113  public:
114  /** Default constructor
115  */
116  TCustomSequenceLandmarks();
117 
119  inline iterator begin() { return m_landmarks.begin(); };
120  inline iterator end() { return m_landmarks.end(); };
121  void clear();
122  inline size_t size() const { return m_landmarks.size(); };
123 
125  inline const_iterator begin() const { return m_landmarks.begin(); };
126  inline const_iterator end() const { return m_landmarks.end(); };
127 
128  /** The object is copied, thus the original copy passed as a parameter can be released.
129  */
130  void push_back( const CLandmark &lm);
131  CLandmark* get(unsigned int indx);
132  const CLandmark* get(unsigned int indx) const;
133  void isToBeModified(unsigned int indx);
134  void hasBeenModified(unsigned int indx);
135  void hasBeenModifiedAll();
136  void erase(unsigned int indx);
137 
139 
140  /** Returns the landmark with a given landmrk ID, or NULL if not found
141  */
142  const CLandmark* getByID( CLandmark::TLandmarkID ID ) const;
143 
144  /** Returns the landmark with a given beacon ID, or NULL if not found
145  */
146  const CLandmark* getByBeaconID( unsigned int ID ) const;
147 
148  /** This method returns the largest distance from the origin to any of the points, such as a sphere centered at the origin with this radius cover ALL the points in the map (the results are buffered, such as, if the map is not modified, the second call will be much faster than the first one).
149  */
150  float getLargestDistanceFromOrigin() const;
151 
152  } landmarks;
153 
154  /** Constructor
155  */
156  CLandmarksMap();
157 
158  /** Virtual destructor.
159  */
160  virtual ~CLandmarksMap();
161 
162 
163  /**** FAMD ***/
164  /** Map of the Euclidean Distance between the descriptors of two SIFT-based landmarks
165  */
166  static std::map<std::pair<mrpt::maps::CLandmark::TLandmarkID, mrpt::maps::CLandmark::TLandmarkID>, double> _mEDD;
168  static bool _maxIDUpdated;
169 
171  /**** END FAMD *****/
172 
173  // See docs in base class
174  float compute3DMatchingRatio(const mrpt::maps::CMetricMap *otherMap, const mrpt::poses::CPose3D &otherMapPose, const TMatchingRatioParams &params) const MRPT_OVERRIDE;
175 
176  /** With this struct options are provided to the observation insertion process.
177  */
179  {
180  public:
181  /** Initilization of default parameters
182  */
184 
185  void loadFromConfigFile(const mrpt::utils::CConfigFileBase &source,const std::string &section) MRPT_OVERRIDE; // See base docs
186  void dumpToTextStream(mrpt::utils::CStream &out) const MRPT_OVERRIDE; // See base docs
187 
188  /** If set to true (default), the insertion of a CObservationImage in the map will insert SIFT 3D features.
189  */
191 
192  /** If set to true (default), the insertion of a CObservationStereoImages in the map will insert SIFT 3D features.
193  */
195 
196  /** If set to true (default), inserting a CObservation2DRangeScan in the map will generate landmarks for each range.
197  */
199 
200  /** [For SIFT landmarks only] The ratio between the best and second best descriptor distances to set as correspondence (Default=0.4)
201  */
203 
204  /** [For SIFT landmarks only] The minimum likelihood value of a match to set as correspondence (Default=0.5)
205  */
207 
208  /****************************************** FAMD ******************************************/
209  /** [For SIFT landmarks only] The minimum Euclidean Descriptor Distance value of a match to set as correspondence (Default=200)
210  */
212 
213  /** [For SIFT landmarks only] Method to compute 3D matching (Default = 0 (Our method))
214  * 0: Our method -> Euclidean Distance between Descriptors and 3D position
215  * 1: Sim, Elinas, Griffin, Little -> Euclidean Distance between Descriptors
216  */
217  unsigned int SIFTMatching3DMethod;
218 
219  /** [For SIFT landmarks only] Method to compute the likelihood (Default = 0 (Our method))
220  * 0: Our method -> Euclidean Distance between Descriptors and 3D position
221  * 1: Sim, Elinas, Griffin, Little -> 3D position
222  */
223  unsigned int SIFTLikelihoodMethod;
224 
225  /****************************************** END FAMD ******************************************/
226 
227  /** [For SIFT landmarks only] The distance (in meters) of the mean value of landmarks, for the initial position PDF (Default = 3m)
228  */
230 
231  /** [For SIFT landmarks only] The width (in meters, standard deviation) of the ellipsoid in the axis perpendicular to the main directiom (Default = 0.05f)
232  */
234 
235  /** [For SIFT landmarks only] The standard deviation (in pixels) for the SIFTs detector (This is used for the Jacobbian to project stereo images to 3D)
236  */
237  float SIFTs_stdXY, SIFTs_stdDisparity;
238 
239  /** Number of points to extract in the image
240  */
242 
243  /** Maximum depth of 3D landmarks when loading a landmarks map from a stereo image observation.
244  */
246 
247  /** Maximum distance (in pixels) from a point to a certain epipolar line to be considered a potential match.
248  */
250 
251  /** Indicates if the images (as well as the SIFT detected features) should be shown in a window.
252  */
254 
255  /** Parameters of the SIFT feature detector/descriptors while inserting images in the landmark map.
256  * \note There exists another \a SIFT_feat_options field in the \a likelihoodOptions member.
257  * \note All parameters of this field can be loaded from a config file. See mrpt::vision::CFeatureExtraction::TOptions for the names of the expected fields.
258  */
260 
261  } insertionOptions;
262 
263  /** With this struct options are provided to the likelihood computations.
264  */
266  {
267  public:
269 
270  void loadFromConfigFile(const mrpt::utils::CConfigFileBase &source,const std::string &section) MRPT_OVERRIDE; // See base docs
271  void dumpToTextStream(mrpt::utils::CStream &out) const MRPT_OVERRIDE; // See base docs
272 
273  /** @name Parameters for: 2D LIDAR scans
274  * @{ */
275  unsigned int rangeScan2D_decimation; //!< The number of rays from a 2D range scan will be decimated by this factor (default = 1, no decimation)
276  /** @} */
277 
278  /** @name Parameters for: images
279  * @{ */
284  int SIFTs_decimation; //!< Considers 1 out of "SIFTs_decimation" visual landmarks in the observation during the likelihood computation.
285  /** Parameters of the SIFT feature detector/descriptors while inserting images in the landmark map.
286  * \note There exists another \a SIFT_feat_options field in the \a insertionOptions member.
287  * \note All parameters of this field can be loaded from a config file. See mrpt::vision::CFeatureExtraction::TOptions for the names of the expected fields. */
289  /** @} */
290 
291  /** @name Parameters for: Range-only observation
292  * @{ */
293  float beaconRangesStd; //!< The standard deviation used for Beacon ranges likelihood (default=0.08) [meters] \sa beaconRangesUseObservationStd
294  bool beaconRangesUseObservationStd; //!< (Default: false) If true, `beaconRangesStd` is ignored and each individual `CObservationBeaconRanges::stdError` field is used instead.
295  /** @} */
296 
297  /** @name Parameters for: External robot poses observation
298  * @{ */
299  float extRobotPoseStd; //!< The standard deviation used for external robot poses likelihood (default=0.05) [meters]
300  /** @} */
301 
302  /** @name Parameters for: GPS readings
303  * @{ */
304 
305  /** This struct store de GPS longitude, latitude (in degrees ) and altitude (in meters) for the first GPS observation
306  * compose with de sensor position on the robot */
308  {
309  public:
310  TGPSOrigin();
311  double longitude; //!< degrees
312  double latitude; //!< degrees
313  double altitude; //!< meters
314  /** These 3 params allow rotating and shifting GPS coordinates with other 2D maps (e.g. gridmaps).
315  * - ang : Map rotation [deg]
316  * - x_shift, y_shift: (x,y) offset [m] */
317  double ang, x_shift, y_shift;
318  unsigned int min_sat; //!< Minimum number of sats to take into account the data
319  } GPSOrigin;
320 
321  float GPS_sigma; //!< A constant "sigma" for GPS localization data (in meters)
322  /** @} */
323 
324  } likelihoodOptions;
325 
326  /** This struct stores extra results from invoking insertObservation
327  */
329  {
330  /** The number of SIFT detected in left and right images respectively
331  */
332 
333  unsigned int nSiftL, nSiftR;
334 
335 
336  } insertionResults;
337 
338  /** With this struct options are provided to the fusion process.
339  */
341  {
342  /** Initialization
343  */
344  TFuseOptions();
345 
346  /** Required number of times of a landmark to be seen not to be removed, in "ellapsedTime" seconds.
347  */
348  unsigned int minTimesSeen;
349 
350  /** See "minTimesSeen"
351  */
353 
354  } fuseOptions;
355 
356 
357  /** Save to a text file.
358  * In line "i" there are the (x,y,z) mean values of the i'th landmark + type of landmark + # times seen + timestamp + RGB/descriptor + ID
359  *
360  * Returns false if any error occured, true elsewere.
361  */
362  bool saveToTextFile(std::string file);
363 
364  /** Save to a MATLAB script which displays 2D error ellipses for the map (top-view, projection on the XY plane).
365  * \param file The name of the file to save the script to.
366  * \param style The MATLAB-like string for the style of the lines (see 'help plot' in MATLAB for posibilities)
367  * \param stdCount The ellipsoids will be drawn from the center to "stdCount" times the "standard deviations". (default is 2std = 95% confidence intervals)
368  *
369  * \return Returns false if any error occured, true elsewere.
370  */
371  bool saveToMATLABScript2D(
372  std::string file,
373  const char *style="b",
374  float stdCount = 2.0f );
375 
376  /** Save to a MATLAB script which displays 3D error ellipses for the map.
377  * \param file The name of the file to save the script to.
378  * \param style The MATLAB-like string for the style of the lines (see 'help plot' in MATLAB for posibilities)
379  * \param stdCount The ellipsoids will be drawn from the center to a given confidence interval in [0,1], e.g. 2 sigmas=0.95 (default is 2std = 0.95 confidence intervals)
380  *
381  * \return Returns false if any error occured, true elsewere.
382  */
383  bool saveToMATLABScript3D(
384  std::string file,
385  const char *style="b",
386  float confInterval = 0.95f ) const ;
387 
388  /** Returns the stored landmarks count.
389  */
390  size_t size() const;
391 
392  /** Computes the (logarithmic) likelihood function for a sensed observation "o" according to "this" map.
393  * This is the implementation of the algorithm reported in the paper:
394  <em>J.L. Blanco, J. Gonzalez, and J.A. Fernandez-Madrigal, "A Consensus-based Approach for Estimating the Observation Likelihood of Accurate Range Sensors", in IEEE International Conference on Robotics and Automation (ICRA), Rome (Italy), Apr 10-14, 2007</em>
395  */
396  double computeLikelihood_RSLC_2007( const CLandmarksMap *s, const mrpt::poses::CPose2D &sensorPose);
397 
398  /** Loads into this landmarks map the SIFT features extracted from an image observation (Previous contents of map will be erased)
399  * The robot is assumed to be at the origin of the map.
400  * Some options may be applicable from "insertionOptions" (insertionOptions.SIFTsLoadDistanceOfTheMean)
401  *
402  * \param feat_options Optionally, you can pass here parameters for changing the default SIFT detector settings.
403  */
404  void loadSiftFeaturesFromImageObservation(
405  const mrpt::obs::CObservationImage &obs,
407  );
408 
409  /** Loads into this landmarks map the SIFT features extracted from an observation consisting of a pair of stereo-image (Previous contents of map will be erased)
410  * The robot is assumed to be at the origin of the map.
411  * Some options may be applicable from "insertionOptions"
412  *
413  * \param feat_options Optionally, you can pass here parameters for changing the default SIFT detector settings.
414  */
415  void loadSiftFeaturesFromStereoImageObservation(
419  );
420 
421  /** Loads into this landmarks-map a set of occupancy features according to a 2D range scan (Previous contents of map will be erased)
422  * \param obs The observation
423  * \param robotPose The robot pose in the map (Default = the origin)
424  * Some options may be applicable from "insertionOptions"
425  */
426  void loadOccupancyFeaturesFrom2DRangeScan(
428  const mrpt::poses::CPose3D *robotPose = NULL,
429  unsigned int downSampleFactor = 1);
430 
431  // See docs in base class
432  void computeMatchingWith2D(
433  const mrpt::maps::CMetricMap *otherMap,
434  const mrpt::poses::CPose2D &otherMapPose,
435  float maxDistForCorrespondence,
436  float maxAngularDistForCorrespondence,
437  const mrpt::poses::CPose2D &angularDistPivotPoint,
438  mrpt::utils::TMatchingPairList &correspondences,
439  float &correspondencesRatio,
440  float *sumSqrDist = NULL,
441  bool onlyKeepTheClosest = false,
442  bool onlyUniqueRobust = false ) const;
443 
444  /** Perform a search for correspondences between "this" and another lansmarks map:
445  * In this class, the matching is established solely based on the landmarks' IDs.
446  * \param otherMap [IN] The other map.
447  * \param correspondences [OUT] The matched pairs between maps.
448  * \param correspondencesRatio [OUT] This is NumberOfMatchings / NumberOfLandmarksInTheAnotherMap
449  * \param otherCorrespondences [OUT] Will be returned with a vector containing "true" for the indexes of the other map's landmarks with a correspondence.
450  */
451  void computeMatchingWith3DLandmarks(
452  const mrpt::maps::CLandmarksMap *otherMap,
453  mrpt::utils::TMatchingPairList &correspondences,
454  float &correspondencesRatio,
455  std::vector<bool> &otherCorrespondences) const;
456 
457  /** Changes the reference system of the map to a given 3D pose.
458  */
459  void changeCoordinatesReference( const mrpt::poses::CPose3D &newOrg );
460 
461  /** Changes the reference system of the map "otherMap" and save the result in "this" map.
462  */
463  void changeCoordinatesReference( const mrpt::poses::CPose3D &newOrg, const mrpt::maps::CLandmarksMap *otherMap );
464 
465  /** Fuses the contents of another map with this one, updating "this" object with the result.
466  * This process involves fusing corresponding landmarks, then adding the new ones.
467  * \param other The other landmarkmap, whose landmarks will be inserted into "this"
468  * \param justInsertAllOfThem If set to "true", all the landmarks in "other" will be inserted into "this" without checking for possible correspondences (may appear duplicates ones, etc...)
469  */
470  void fuseWith( CLandmarksMap &other, bool justInsertAllOfThem = false );
471 
472  /** Returns the (logarithmic) likelihood of a set of landmarks "map" given "this" map.
473  * See paper: JJAA 2006
474  */
475  double computeLikelihood_SIFT_LandmarkMap(
476  CLandmarksMap *map,
477  mrpt::utils::TMatchingPairList *correspondences = NULL,
478  std::vector<bool> *otherCorrespondences = NULL);
479 
480  /** Returns true if the map is empty/no observation has been inserted.
481  */
482  bool isEmpty() const MRPT_OVERRIDE;
483 
484  /** Simulates a noisy reading toward each of the beacons in the landmarks map, if any.
485  * \param in_robotPose This robot pose is used to simulate the ranges to each beacon.
486  * \param in_sensorLocationOnRobot The 3D position of the sensor on the robot
487  * \param out_Observations The results will be stored here. NOTICE that the fields "CObservationBeaconRanges::minSensorDistance","CObservationBeaconRanges::maxSensorDistance" and "CObservationBeaconRanges::stdError" MUST BE FILLED OUT before calling this function.
488  * An observation will be generated for each beacon in the map, but notice that some of them may be missed if out of the sensor maximum range.
489  */
490  void simulateBeaconReadings(
491  const mrpt::poses::CPose3D &in_robotPose,
492  const mrpt::poses::CPoint3D &in_sensorLocationOnRobot,
493  mrpt::obs::CObservationBeaconRanges &out_Observations ) const;
494 
495  /** Simulates a noisy bearing-range observation of all the beacons (landamrks with type glBeacon) in the landmarks map, if any.
496  * \param[in] robotPose The robot pose.
497  * \param[in] sensorLocationOnRobot The 3D position of the sensor on the robot
498  * \param[out] observations The results will be stored here.
499  * \param[in] sensorDetectsIDs If this is set to false, all the landmarks will be sensed with INVALID_LANDMARK_ID as ID.
500  * \param[in] stdRange The sigma of the sensor noise in range (meters).
501  * \param[in] stdYaw The sigma of the sensor noise in yaw (radians).
502  * \param[in] stdPitch The sigma of the sensor noise in pitch (radians).
503  * \param[out] real_associations If it's not a NULL pointer, this will contain at the return the real indices of the landmarks in the map in the same order than they appear in out_Observations. Useful when sensorDetectsIDs=false. Spurious readings are assigned a std::string::npos (=-1) index.
504  * \param[in] spurious_count_mean The mean number of spurious measurements (uniformly distributed in range & angle) to generate. The number of spurious is generated by rounding a random Gaussin number. If both this mean and the std are zero (the default) no spurious readings are generated.
505  * \param[in] spurious_count_std Read spurious_count_mean above.
506  *
507  * \note The fields "CObservationBearingRange::fieldOfView_*","CObservationBearingRange::maxSensorDistance" and "CObservationBearingRange::minSensorDistance" MUST BE FILLED OUT before calling this function.
508  * \note At output, the observation will have CObservationBearingRange::validCovariances set to "false" and the 3 sensor_std_* members correctly set to their values.
509  * An observation will be generated for each beacon in the map, but notice that some of them may be missed if out of the sensor maximum range or field of view-
510  */
511  void simulateRangeBearingReadings(
512  const mrpt::poses::CPose3D &robotPose,
513  const mrpt::poses::CPose3D &sensorLocationOnRobot,
514  mrpt::obs::CObservationBearingRange &observations,
515  bool sensorDetectsIDs = true,
516  const float stdRange = 0.01f,
517  const float stdYaw = mrpt::utils::DEG2RAD(0.1f),
518  const float stdPitch = mrpt::utils::DEG2RAD(0.1f),
519  vector_size_t *real_associations = NULL,
520  const double spurious_count_mean = 0,
521  const double spurious_count_std = 0
522  ) const;
523 
524 
525  /** This virtual method saves the map to a file "filNamePrefix"+< some_file_extension >, as an image or in any other applicable way (Notice that other methods to save the map may be implemented in classes implementing this virtual interface).
526  * In the case of this class, these files are generated:
527  * - "filNamePrefix"+"_3D.m": A script for MATLAB for drawing landmarks as 3D ellipses.
528  * - "filNamePrefix"+"_3D.3DScene": A 3D scene with a "ground plane grid" and the set of ellipsoids in 3D.
529  */
530  void saveMetricMapRepresentationToFile(const std::string &filNamePrefix) const MRPT_OVERRIDE;
531 
532  /** Returns a 3D object representing the map.
533  * \sa COLOR_LANDMARKS_IN_3DSCENES
534  */
535  void getAs3DObject(mrpt::opengl::CSetOfObjectsPtr &outObj) const MRPT_OVERRIDE;
536 
537  // See base docs
538  virtual void auxParticleFilterCleanUp() MRPT_OVERRIDE;
539 
541  typedef std::pair<mrpt::math::TPoint3D,unsigned int> TPairIdBeacon;
542  std::deque<TPairIdBeacon> initialBeacons; //!< Initial contents of the map, especified by a set of 3D Beacons with associated IDs
543  mrpt::maps::CLandmarksMap::TInsertionOptions insertionOpts;
544  mrpt::maps::CLandmarksMap::TLikelihoodOptions likelihoodOpts;
546 
547  }; // End of class def.
548  DEFINE_SERIALIZABLE_POST_CUSTOM_BASE_LINKAGE( CLandmarksMap, CMetricMap, VISION_IMPEXP )
549 
550 
551  } // End of namespace
552 } // End of namespace
553 
554 #endif
mrpt::utils::CDynamicGrid< vector_int > * getGrid()
Parameters for CMetricMap::compute3DMatchingRatio()
float SiftEDDThreshold
[For SIFT landmarks only] The minimum Euclidean Descriptor Distance value of a match to set as corres...
Declares a class derived from "CObservation" that encapsules an image from a camera, whose relative pose to robot is also stored.
bool insert_SIFTs_from_stereo_images
If set to true (default), the insertion of a CObservationStereoImages in the map will insert SIFT 3D ...
#define MAP_DEFINITION_END(_CLASS_NAME_, _LINKAGE_)
unsigned int SIFTLikelihoodMethod
[For SIFT landmarks only] Method to compute the likelihood (Default = 0 (Our method)) 0: Our method -...
#define MRPT_OVERRIDE
C++11 "override" for virtuals:
float beaconRangesStd
The standard deviation used for Beacon ranges likelihood (default=0.08) [meters]. ...
void saveToTextFile(const std::string &file, mrpt::math::TMatrixTextFileFormat fileFormat=mrpt::math::MATRIX_FORMAT_ENG, bool appendMRPTHeader=false, const std::string &userHeader=std::string()) const
Save matrix to a text file, compatible with MATLAB text format (see also the methods of matrix classe...
float SIFTs_stereo_maxDepth
Maximum depth of 3D landmarks when loading a landmarks map from a stereo image observation.
Scalar * iterator
Definition: eigen_plugins.h:23
With this struct options are provided to the observation insertion process.
bool m_largestDistanceFromOriginIsUpdated
Auxiliary variables used in "getLargestDistanceFromOrigin".
std::pair< mrpt::math::TPoint3D, unsigned int > TPairIdBeacon
float extRobotPoseStd
The standard deviation used for external robot poses likelihood (default=0.05) [meters].
EIGEN_STRONG_INLINE void push_back(Scalar val)
Insert an element at the end of the container (for 1D vectors/arrays)
The set of parameters for all the detectors & descriptor algorithms.
float m_largestDistanceFromOrigin
Auxiliary variables used in "getLargestDistanceFromOrigin".
internal::TSequenceLandmarks::iterator iterator
const Scalar * const_iterator
Definition: eigen_plugins.h:24
This struct store de GPS longitude, latitude (in degrees ) and altitude (in meters) for the first GPS...
int64_t TLandmarkID
The type for the IDs of landmarks.
void clear()
Clear the contents of this container.
Definition: ts_hash_map.h:113
The list of landmarks: the wrapper class is just for maintaining the KD-Tree representation.
With this struct options are provided to the likelihood computations.
This class allows loading and storing values and vectors of different types from a configuration text...
bool beaconRangesUseObservationStd
(Default: false) If true, beaconRangesStd is ignored and each individual CObservationBeaconRanges::st...
static mrpt::maps::CLandmark::TLandmarkID _mapMaxID
bool insert_SIFTs_from_monocular_images
If set to true (default), the insertion of a CObservationImage in the map will insert SIFT 3D feature...
float SIFTsLoadDistanceOfTheMean
[For SIFT landmarks only] The distance (in meters) of the mean value of landmarks, for the initial position PDF (Default = 3m)
GLdouble s
Definition: glew.h:1295
This base class is used to provide a unified interface to files,memory buffers,..Please see the deriv...
Definition: CStream.h:38
int SIFTs_numberOfKLTKeypoints
Number of points to extract in the image.
#define DEFINE_SERIALIZABLE_PRE_CUSTOM_BASE_LINKAGE(class_name, base_name, _LINKAGE_)
This declaration must be inserted in all CSerializable classes definition, before the class declarati...
int SIFTs_decimation
Considers 1 out of "SIFTs_decimation" visual landmarks in the observation during the likelihood compu...
A class for storing a map of 3D probabilistic landmarks.
internal::TSequenceLandmarks m_landmarks
The actual list.
float SIFTs_stdXY
[For SIFT landmarks only] The standard deviation (in pixels) for the SIFTs detector (This is used for...
Scale Invariant Feature Transform [LOWE'04].
A list of TMatchingPair.
Definition: TMatchingPair.h:78
Observation class for either a pair of left+right or left+disparity images from a stereo camera...
#define DEG2RAD
mrpt::maps::CLandmarksMap CLandmarksMap
Backward compatible typedef.
mrpt::vision::CFeatureExtraction::TOptions SIFT_feat_options
Parameters of the SIFT feature detector/descriptors while inserting images in the landmark map...
unsigned int minTimesSeen
Required number of times of a landmark to be seen not to be removed, in "ellapsedTime" seconds...
static std::map< std::pair< mrpt::maps::CLandmark::TLandmarkID, mrpt::maps::CLandmark::TLandmarkID >, double > _mEDD
Map of the Euclidean Distance between the descriptors of two SIFT-based landmarks.
unsigned int rangeScan2D_decimation
The number of rays from a 2D range scan will be decimated by this factor (default = 1...
GLsizeiptr size
Definition: glew.h:1586
The class for storing "landmarks" (visual or laser-scan-extracted features,...)
#define DEFINE_SERIALIZABLE(class_name)
This declaration must be inserted in all CSerializable classes definition, within the class declarati...
A "CObservation"-derived class that represents a 2D range scan measurement (typically from a laser sc...
GLsizei const GLcharARB ** string
Definition: glew.h:3293
Declares a virtual base class for all metric maps storage classes.
A class used to store a 2D pose, including the 2D coordinate point and a heading (phi) angle...
Definition: CPose2D.h:36
bool PLOT_IMAGES
Indicates if the images (as well as the SIFT detected features) should be shown in a window...
A class used to store a 3D pose (a 3D translation + a rotation in 3D).
Definition: CPose3D.h:72
float SIFTsLoadEllipsoidWidth
[For SIFT landmarks only] The width (in meters, standard deviation) of the ellipsoid in the axis perp...
GLfloat * params
Definition: glew.h:1436
std::vector< size_t > vector_size_t
Definition: types_simple.h:25
bool insert_Landmarks_from_range_scans
If set to true (default), inserting a CObservation2DRangeScan in the map will generate landmarks for ...
This struct stores extra results from invoking insertObservation.
float SIFTs_epipolar_TH
Maximum distance (in pixels) from a point to a certain epipolar line to be considered a potential mat...
float SiftLikelihoodThreshold
[For SIFT landmarks only] The minimum likelihood value of a match to set as correspondence (Default=0...
mrpt::vision::CFeatureExtraction::TOptions SIFT_feat_options
Parameters of the SIFT feature detector/descriptors while inserting images in the landmark map...
#define DEFINE_SERIALIZABLE_POST_CUSTOM_BASE_LINKAGE(class_name, base_name, _LINKAGE_)
float SiftCorrRatioThreshold
[For SIFT landmarks only] The ratio between the best and second best descriptor distances to set as c...
#define MAP_DEFINITION_START(_CLASS_NAME_, _LINKAGE_)
Add a MAP_DEFINITION_START() ...
GLsizei GLsizei GLchar * source
Definition: glew.h:1739
This is a virtual base class for sets of options than can be loaded from and/or saved to configuratio...
unsigned int min_sat
Minimum number of sats to take into account the data.
mrpt::utils::CDynamicGrid< vector_int > m_grid
A grid-map with the set of landmarks falling into each cell.
float GPS_sigma
A constant "sigma" for GPS localization data (in meters)
With this struct options are provided to the fusion process.
std::vector< CLandmark > TSequenceLandmarks
GLdouble GLdouble GLdouble GLdouble GLdouble GLdouble f
Definition: glew.h:5092
unsigned int SIFTMatching3DMethod
[For SIFT landmarks only] Method to compute 3D matching (Default = 0 (Our method)) 0: Our method -> E...



Page generated by Doxygen 1.8.6 for MRPT 1.5.6 Git: 4c65e84 Tue Apr 24 08:18:17 2018 +0200 at mar abr 24 08:26:17 CEST 2018