21 #include <Eigen/Dense>    51     size_t N = m_modes.size();
    52     double X = 0, Y = 0, Z = 0;
    56         CListGaussianModes::const_iterator it;
    59         for (it = m_modes.begin(); it != m_modes.end(); ++it)
    62             sumW += w = exp(it->log_w);
    63             X += it->val.mean.x() * w;
    64             Y += it->val.mean.y() * w;
    65             Z += it->val.mean.z() * w;
    82     size_t N = m_modes.size();
    95         CListGaussianModes::const_iterator it;
    97         for (it = m_modes.begin(); it != m_modes.end(); ++it)
   100             sumW += w = exp(it->log_w);
   103             estMean_i -= estMean;
   107             partCov += it->val.cov;
   112         if (sumW != 0) estCov *= (1.0 / sumW);
   121     uint32_t N = m_modes.size();
   123     for (
const auto& m : m_modes)
   141             for (
auto& m : m_modes)
   146                 if (version == 0) m.log_w = log(max(1e-300, m.log_w));
   162     if (
this == &o) 
return;  
   166         m_modes = 
dynamic_cast<const CPointPDFSOG*
>(&o)->m_modes;
   172         m_modes[0].log_w = 0;
   185     if (!f) 
return false;
   187     for (
const auto& m_mode : m_modes)
   189             f, 
"%e %e %e %e %e %e %e %e %e %e\n", exp(m_mode.log_w),
   190             m_mode.val.mean.x(), m_mode.val.mean.y(), m_mode.val.mean.z(),
   191             m_mode.val.cov(0, 0), m_mode.val.cov(1, 1), m_mode.val.cov(2, 2),
   192             m_mode.val.cov(0, 1), m_mode.val.cov(0, 2), m_mode.val.cov(1, 2));
   202     for (
auto& m : m_modes) m.val.changeCoordinatesReference(newReferenceBase);
   215     vector<double> logWeights(m_modes.size());
   216     vector<size_t> outIdxs;
   217     vector<double>::iterator itW;
   218     CListGaussianModes::const_iterator it;
   219     for (it = m_modes.begin(), itW = logWeights.begin(); it != m_modes.end();
   223     CParticleFilterCapable::computeResampling(
   224         CParticleFilter::prMultinomial,  
   230     size_t selectedIdx = outIdxs[0];
   231     ASSERT_(selectedIdx < m_modes.size());
   239     outSample.
x(selMode->mean.x() + vec[0]);
   240     outSample.
y(selMode->mean.y() + vec[1]);
   241     outSample.z(selMode->mean.z() + vec[2]);
   251     const double minMahalanobisDistToDrop)
   260     const auto* p1 = 
dynamic_cast<const CPointPDFSOG*
>(&p1_);
   261     const auto* p2 = 
dynamic_cast<const CPointPDFSOG*
>(&p2_);
   267     const double minMahalanobisDistToDrop2 = 
square(minMahalanobisDistToDrop);
   269     this->m_modes.clear();
   273     for (
const auto& m : p1->m_modes)
   284         ASSERT_(c(0, 0) != 0 && c(0, 0) != 0);
   292         double a = -0.5 * (3 * log(
M_2PI) - log(covInv.
det()) +
   293                            (eta.transpose() * c.
asEigen() * eta)(0, 0));
   295         for (
const auto& m2 : p2->m_modes)
   297             auxSOG_Kernel_i = m2.val;
   298             if (auxSOG_Kernel_i.
cov(2, 2) == 0)
   300                 auxSOG_Kernel_i.
cov(2, 2) = 1;
   304                 auxSOG_Kernel_i.
cov(0, 0) > 0 && auxSOG_Kernel_i.
cov(1, 1) > 0);
   307             bool reallyComputeThisOne = 
true;
   308             if (minMahalanobisDistToDrop > 0)
   311                 double stdX2 = max(auxSOG_Kernel_i.
cov(0, 0), m.val.cov(0, 0));
   313                     square(auxSOG_Kernel_i.
mean.
x() - m.val.mean.x()) / stdX2;
   315                 double stdY2 = max(auxSOG_Kernel_i.
cov(1, 1), m.val.cov(1, 1));
   317                     square(auxSOG_Kernel_i.
mean.
y() - m.val.mean.y()) / stdY2;
   322                         max(auxSOG_Kernel_i.
cov(2, 2), m.val.cov(2, 2));
   324                         square(auxSOG_Kernel_i.
mean.z() - m.val.mean.z()) /
   328                 reallyComputeThisOne = mahaDist2 < minMahalanobisDistToDrop2;
   331             if (reallyComputeThisOne)
   346                 newKernel.
val = auxGaussianProduct;  
   349                 Eigen::Vector3d eta_i =
   351                 eta_i = covInv_i.
asEigen() * eta_i;
   354                 Eigen::Vector3d new_eta_i =
   356                 new_eta_i = new_covInv_i.
asEigen() * new_eta_i;
   359                     -0.5 * (3 * log(
M_2PI) - log(new_covInv_i.
det()) +
   360                             (eta_i.transpose() * auxSOG_Kernel_i.
cov.
asEigen() *
   363                     -0.5 * (3 * log(
M_2PI) - log(new_covInv_i.
det()) +
   364                             (new_eta_i.transpose() *
   367                 newKernel.
log_w = m.log_w + m2.log_w + a + a_i - new_a_i;
   370                 if (is2D) newKernel.
val.
cov(2, 2) = 0;
   373                 this->m_modes.push_back(newKernel);
   392     for (
auto& m_mode : m_modes)
   394         m_mode.val.cov(0, 1) = m_mode.val.cov(1, 0);
   395         m_mode.val.cov(0, 2) = m_mode.val.cov(2, 0);
   396         m_mode.val.cov(1, 2) = m_mode.val.cov(2, 1);
   409     if (!m_modes.size()) 
return;
   411     CListGaussianModes::iterator it;
   412     double maxW = m_modes[0].log_w;
   413     for (it = m_modes.begin(); it != m_modes.end(); ++it)
   414         maxW = max(maxW, it->log_w);
   416     for (it = m_modes.begin(); it != m_modes.end(); ++it) it->log_w -= maxW;
   427     CListGaussianModes::const_iterator it;
   431     double sumLinearWeights = 0;
   432     for (it = m_modes.begin(); it != m_modes.end(); ++it)
   433         sumLinearWeights += exp(it->log_w);
   436     for (it = m_modes.begin(); it != m_modes.end(); ++it)
   437         cum += 
square(exp(it->log_w) / sumLinearWeights);
   442         return 1.0 / (m_modes.size() * cum);
   450     float x_min, 
float x_max, 
float y_min, 
float y_max, 
float resolutionXY,
   451     float z, 
CMatrixD& outMatrix, 
bool sumOverAllZs)
   459     const auto Nx = (size_t)ceil((x_max - x_min) / resolutionXY);
   460     const auto Ny = (size_t)ceil((y_max - y_min) / resolutionXY);
   463     for (
size_t i = 0; i < Ny; i++)
   465         const float y = y_min + i * resolutionXY;
   466         for (
size_t j = 0; j < Nx; j++)
   468             float x = x_min + j * resolutionXY;
   469             outMatrix(i, j) = evaluatePDF(
CPoint3D(x, y, z), sumOverAllZs);
   489         for (
const auto& m_mode : m_modes)
   500         CMatrixD X(2, 1), MU(2, 1), COV(2, 2);
   506         for (
const auto& m_mode : m_modes)
   508             MU(0, 0) = m_mode.val.mean.x();
   509             MU(1, 0) = m_mode.val.mean.y();
   511             COV(0, 0) = m_mode.val.cov(0, 0);
   512             COV(1, 1) = m_mode.val.cov(1, 1);
   513             COV(0, 1) = COV(1, 0) = m_mode.val.cov(0, 1);
   533         auto it_best = m_modes.end();
   534         for (
auto it = m_modes.begin(); it != m_modes.end(); ++it)
   535             if (it_best == m_modes.end() || it->log_w > it_best->log_w)
   538         outVal = it_best->val;
 A namespace of pseudo-random numbers generators of diferent distributions. 
 
void serializeSymmetricMatrixTo(MAT &m, mrpt::serialization::CArchive &out)
Binary serialization of symmetric matrices, saving the space of duplicated values. 
 
This class is a "CSerializable" wrapper for "CMatrixDynamic<double>". 
 
void getMean(CPoint3D &mean_point) const override
 
int void fclose(FILE *f)
An OS-independent version of fclose. 
 
#define IMPLEMENTS_SERIALIZABLE(class_name, base, NameSpace)
To be added to all CSerializable-classes implementation files. 
 
CPoint3D mean
The mean value. 
 
The namespace for Bayesian filtering algorithm: different particle filters and Kalman filter algorith...
 
void resize(const size_t N)
Resize the number of SOG modes. 
 
Declares a class that represents a Probability Density function (PDF) of a 3D point ...
 
The struct for each mode: 
 
size_type size() const
Get a 2-vector with [NROWS NCOLS] (as in MATLAB command size(x)) 
 
void clear()
Clear all the gaussian modes. 
 
void drawSingleSample(CPoint3D &outSample) const override
Draw a sample from the pdf. 
 
#define MRPT_THROW_UNKNOWN_SERIALIZATION_VERSION(__V)
For use in CSerializable implementations. 
 
#define ASSERT_(f)
Defines an assertion mechanism. 
 
void bayesianFusion(const CPointPDFGaussian &p1, const CPointPDFGaussian &p2)
Bayesian fusion of two points gauss. 
 
CMatrixFixed< double, 3, 3 > CMatrixDouble33
 
This base provides a set of functions for maths stuff. 
 
#define CLASS_ID(T)
Access to runtime class ID for a defined class name. 
 
CMatrixFixed< double, 3, 1 > CMatrixDouble31
 
void serializeFrom(mrpt::serialization::CArchive &in, uint8_t serial_version) override
Pure virtual method for reading (deserializing) from an abstract archive. 
 
mrpt::math::CMatrixDouble33 cov
The 3x3 covariance matrix. 
 
void deserializeSymmetricMatrixFrom(MAT &m, mrpt::serialization::CArchive &in)
Binary serialization of symmetric matrices, saving the space of duplicated values. 
 
void normalizeWeights()
Normalize the weights in m_modes such as the maximum log-weight is 0. 
 
Scalar det() const
Determinant of matrix. 
 
virtual const mrpt::rtti::TRuntimeClassId * GetRuntimeClass() const override
Returns information about the class of an object in runtime. 
 
double x() const
Common members of all points & poses classes. 
 
Derived inverse_LLt() const
Returns the inverse of a symmetric matrix using LLt. 
 
std::tuple< cov_mat_t, type_value > getCovarianceAndMean() const override
Returns an estimate of the pose covariance matrix (STATE_LENxSTATE_LEN cov matrix) and the mean...
 
A class used to store a 3D point. 
 
void serializeTo(mrpt::serialization::CArchive &out) const override
Pure virtual method for writing (serializing) to an abstract archive. 
 
Declares a class that represents a probability density function (pdf) of a 2D pose (x...
 
Classes for 2D/3D geometry representation, both of single values and probability density distribution...
 
int fprintf(FILE *fil, const char *format,...) noexcept MRPT_printf_format_check(2
An OS-independent version of fprintf. 
 
return_t square(const num_t x)
Inline function for the square of a number. 
 
void changeCoordinatesReference(const CPose3D &newReferenceBase) override
this = p (+) this. 
 
Virtual base class for "archives": classes abstracting I/O streams. 
 
void copyFrom(const CPointPDF &o) override
Copy operator, translating if necesary (for example, between particles and gaussian representations) ...
 
void drawGaussianMultivariate(std::vector< T > &out_result, const MATRIX &cov, const std::vector< T > *mean=nullptr)
Generate multidimensional random samples according to a given covariance matrix. 
 
virtual std::tuple< cov_mat_t, type_value > getCovarianceAndMean() const =0
Returns an estimate of the pose covariance matrix (STATE_LENxSTATE_LEN cov matrix) and the mean...
 
A class used to store a 3D pose (a 3D translation + a rotation in 3D). 
 
mrpt::vision::TStereoCalibResults out
 
This file implements matrix/vector text and binary serialization. 
 
double ESS() const
Computes the "Effective sample size" (typical measure for Particle Filters), applied to the weights o...
 
void setSize(size_t row, size_t col, bool zeroNewElements=false)
Changes the size of matrix, maintaining the previous contents. 
 
EIGEN_MAP asEigen()
Get as an Eigen-compatible Eigen::Map object. 
 
void evaluatePDFInArea(float x_min, float x_max, float y_min, float y_max, float resolutionXY, float z, mrpt::math::CMatrixD &outMatrix, bool sumOverAllZs=false)
Evaluates the PDF within a rectangular grid and saves the result in a matrix (each row contains value...
 
double log_w
The log-weight. 
 
void getMostLikelyMode(CPointPDFGaussian &outVal) const
Return the Gaussian mode with the highest likelihood (or an empty Gaussian if there are no modes in t...
 
FILE * fopen(const char *fileName, const char *mode) noexcept
An OS-independent version of fopen. 
 
void enforceCovSymmetry()
Assures the symmetry of the covariance matrix (eventually certain operations in the math-coprocessor ...
 
CRandomGenerator & getRandomGenerator()
A static instance of a CRandomGenerator class, for use in single-thread applications. 
 
Declares a class that represents a Probability Distribution function (PDF) of a 3D point (x...
 
double normalPDF(double x, double mu, double std)
Evaluates the univariate normal (Gaussian) distribution at a given point "x". 
 
uint8_t serializeGetVersion() const override
Must return the current versioning number of the object. 
 
double evaluatePDF(const CPoint3D &x, bool sumOverAllZs) const
Evaluates the PDF at a given point. 
 
bool saveToTextFile(const std::string &file) const override
Save the density to a text file, with the following format: There is one row per Gaussian "mode"...
 
A gaussian distribution for 3D points. 
 
void bayesianFusion(const CPointPDF &p1, const CPointPDF &p2, const double minMahalanobisDistToDrop=0) override
Bayesian fusion of two point distributions (product of two distributions->new distribution), then save the result in this object (WARNING: See implementing classes to see classes that can and cannot be mixtured!)