Vector and matrices mathematical operations¶
and other utilities
// global functions template <size_t NROWS, size_t NCOLS> mrpt::serialization::CArchive& mrpt::math::operator >> (mrpt::serialization::CArchive& in, CMatrixFixed<float, NROWS, NCOLS>& M); template <size_t NROWS, size_t NCOLS> mrpt::serialization::CArchive& mrpt::math::operator >> (mrpt::serialization::CArchive& in, CMatrixFixed<double, NROWS, NCOLS>& M); template <size_t NROWS, size_t NCOLS> mrpt::serialization::CArchive& mrpt::math::operator << ( mrpt::serialization::CArchive& out, const CMatrixFixed<float, NROWS, NCOLS>& M ); template <size_t NROWS, size_t NCOLS> mrpt::serialization::CArchive& mrpt::math::operator << ( mrpt::serialization::CArchive& out, const CMatrixFixed<double, NROWS, NCOLS>& M ); template <typename MAT> void mrpt::math::deserializeSymmetricMatrixFrom(MAT& m, mrpt::serialization::CArchive& in); template <typename MAT> void mrpt::math::serializeSymmetricMatrixTo(MAT& m, mrpt::serialization::CArchive& out); template <typename T1, typename T2> std::vector<T1>& mrpt::math::operator *= ( std::vector<T1>& a, const std::vector<T2>& b ); template <typename T1> std::vector<T1>& mrpt::math::operator *= (std::vector<T1>& a, const T1 b); template <typename T1, typename T2> std::vector<T1> mrpt::math::operator * ( const std::vector<T1>& a, const std::vector<T2>& b ); template <typename T1, typename T2> std::vector<T1>& mrpt::math::operator += ( std::vector<T1>& a, const std::vector<T2>& b ); template <typename T1> std::vector<T1>& mrpt::math::operator += (std::vector<T1>& a, const T1 b); template <typename T1, typename T2> std::vector<T1> mrpt::math::operator + ( const std::vector<T1>& a, const std::vector<T2>& b ); template <typename T1, typename T2> std::vector<T1> mrpt::math::operator - ( const std::vector<T1>& v1, const std::vector<T2>& v2 ); template <class T> std::ostream& mrpt::math::operator << (std::ostream& out, const std::vector<T>& d); template <class T> std::ostream& mrpt::math::operator << (std::ostream& out, std::vector<T>* d); template <typename T, size_t N> mrpt::serialization::CArchive& mrpt::math::operator << (mrpt::serialization::CArchive& ostrm, const CVectorFixed<T, N>& a); template <typename T, size_t N> mrpt::serialization::CArchive& mrpt::math::operator >> (mrpt::serialization::CArchive& istrm, CVectorFixed<T, N>& a); bool mrpt::math::loadVector(std::istream& f, std::vector<int>& d); bool mrpt::math::loadVector(std::istream& f, std::vector<double>& d); void mrpt::math::medianFilter( const std::vector<double>& inV, std::vector<double>& outV, int winSize, int numberOfSigmas = 2 ); template <typename T, typename VECTOR> void mrpt::math::linspace( T first, T last, size_t count, VECTOR& out_vector ); template <typename T, typename VECTOR = std::vector<T>> VECTOR mrpt::math::linspace( T first, T last, size_t count ); template <class T, T STEP> std::vector<T> mrpt::math::sequenceStdVec(T first, size_t length); template <class VEC1, class VEC2> void mrpt::math::normalize(const VEC1& v, VEC2& out_v); template <class VECTOR_OF_VECTORS, class VECTORLIKE> void mrpt::math::extractColumnFromVectorOfVectors( const size_t colIndex, const VECTOR_OF_VECTORS& data, VECTORLIKE& out_column ); uint64_t mrpt::math::factorial64(unsigned int n); double mrpt::math::factorial(unsigned int n); template <typename VECTOR_T, typename At, size_t N> VECTOR_T& mrpt::math::loadVector( VECTOR_T& v, At(&) theArray [N] ); template <typename T, typename At, size_t N> std::vector<T>& mrpt::math::loadVector( std::vector<T>& v, At(&) theArray [N] ); template <class T> void mrpt::math::wrapTo2PiInPlace(T& a); template <class T> T mrpt::math::wrapTo2Pi(T a); template <class T> T mrpt::math::wrapToPi(T a); template <class T> void mrpt::math::wrapToPiInPlace(T& a); template <class VECTOR> void mrpt::math::unwrap2PiSequence(VECTOR& x); template <class T> T mrpt::math::angDistance(T from, T to);
Global Functions¶
template <size_t NROWS, size_t NCOLS> mrpt::serialization::CArchive& mrpt::math::operator >> ( mrpt::serialization::CArchive& in, CMatrixFixed<float, NROWS, NCOLS>& M )
Read operator from a CStream.
The format is compatible with that of CMatrixF & CMatrixD
template <size_t NROWS, size_t NCOLS> mrpt::serialization::CArchive& mrpt::math::operator >> ( mrpt::serialization::CArchive& in, CMatrixFixed<double, NROWS, NCOLS>& M )
Read operator from a CStream.
The format is compatible with that of CMatrixF & CMatrixD
template <size_t NROWS, size_t NCOLS> mrpt::serialization::CArchive& mrpt::math::operator << ( mrpt::serialization::CArchive& out, const CMatrixFixed<float, NROWS, NCOLS>& M )
Write operator for writing into a CStream.
The format is compatible with that of CMatrixF & CMatrixD
template <size_t NROWS, size_t NCOLS> mrpt::serialization::CArchive& mrpt::math::operator << ( mrpt::serialization::CArchive& out, const CMatrixFixed<double, NROWS, NCOLS>& M )
Write operator for writing into a CStream.
The format is compatible with that of CMatrixF & CMatrixD
template <typename MAT> void mrpt::math::deserializeSymmetricMatrixFrom( MAT& m, mrpt::serialization::CArchive& in )
Binary serialization of symmetric matrices, saving the space of duplicated values.
See also:
template <typename MAT> void mrpt::math::serializeSymmetricMatrixTo( MAT& m, mrpt::serialization::CArchive& out )
Binary serialization of symmetric matrices, saving the space of duplicated values.
See also:
deserializeSymmetricMatrixFrom()
template <typename T1, typename T2> std::vector<T1>& mrpt::math::operator *= ( std::vector<T1>& a, const std::vector<T2>& b )
a*=b (element-wise multiplication)
template <typename T1> std::vector<T1>& mrpt::math::operator *= ( std::vector<T1>& a, const T1 b )
a*=k (multiplication by a constant)
template <typename T1, typename T2> std::vector<T1> mrpt::math::operator * ( const std::vector<T1>& a, const std::vector<T2>& b )
a*b (element-wise multiplication)
template <typename T1, typename T2> std::vector<T1>& mrpt::math::operator += ( std::vector<T1>& a, const std::vector<T2>& b )
a+=b (element-wise sum)
template <typename T1> std::vector<T1>& mrpt::math::operator += ( std::vector<T1>& a, const T1 b )
a+=b (sum a constant)
template <typename T1, typename T2> std::vector<T1> mrpt::math::operator + ( const std::vector<T1>& a, const std::vector<T2>& b )
a+b (element-wise sum)
template <class T> std::ostream& mrpt::math::operator << ( std::ostream& out, const std::vector<T>& d )
A template function for printing out the contents of a std::vector variable.
template <class T> std::ostream& mrpt::math::operator << ( std::ostream& out, std::vector<T>* d )
A template function for printing out the contents of a std::vector variable.
template <typename T, size_t N> mrpt::serialization::CArchive& mrpt::math::operator << ( mrpt::serialization::CArchive& ostrm, const CVectorFixed<T, N>& a )
Binary dump of a CVectorFixed<T,N> to a stream.
template <typename T, size_t N> mrpt::serialization::CArchive& mrpt::math::operator >> (mrpt::serialization::CArchive& istrm, CVectorFixed<T, N>& a)
Binary read of a CVectorFixed<T,N> from a stream.
bool mrpt::math::loadVector(std::istream& f, std::vector<int>& d)
Loads one row of a text file as a numerical std::vector.
Returns:
false on EOF or invalid format. The body of the function is implemented in MATH.cpp
bool mrpt::math::loadVector(std::istream& f, std::vector<double>& d)
Loads one row of a text file as a numerical std::vector.
Returns:
false on EOF or invalid format. The body of the function is implemented in MATH.cpp
template <typename T, typename VECTOR> void mrpt::math::linspace( T first, T last, size_t count, VECTOR& out_vector )
Generates an equidistant sequence of numbers given the first one, the last one and the desired number of points.
See also:
sequence
template <typename T, typename VECTOR = std::vector<T>> VECTOR mrpt::math::linspace( T first, T last, size_t count )
Generates an equidistant sequence of numbers given the first one, the last one and the desired number of points.
[New in MRPT 2.1.4]
See also:
sequence
template <class T, T STEP> std::vector<T> mrpt::math::sequenceStdVec( T first, size_t length )
Generates a sequence of values [first,first+STEP,first+2*STEP,…].
See also:
linspace, sequence
template <class VEC1, class VEC2> void mrpt::math::normalize( const VEC1& v, VEC2& out_v )
Normalize a vector, such as its norm is the unity.
If the vector has a null norm, the output is a null vector.
template <class VECTOR_OF_VECTORS, class VECTORLIKE> void mrpt::math::extractColumnFromVectorOfVectors( const size_t colIndex, const VECTOR_OF_VECTORS& data, VECTORLIKE& out_column )
Extract a column from a vector of vectors, and store it in another vector.
Input data can be: std::vector<mrpt::math::CVectorDouble>, std::deque<std::list<double> >, std::list<CVectorFixedDouble<5> >, etc. etc.
Output is the sequence: data[0][idx],data[1][idx],data[2][idx], etc..
For the sake of generality, this function does NOT check the limits in the number of column, unless it’s implemented in the [] operator of each of the “rows”.
uint64_t mrpt::math::factorial64(unsigned int n)
Computes the factorial of an integer number and returns it as a 64-bit integer number.
double mrpt::math::factorial(unsigned int n)
Computes the factorial of an integer number and returns it as a double value (internally it uses logarithms for avoiding overflow).
template <typename VECTOR_T, typename At, size_t N> VECTOR_T& mrpt::math::loadVector( VECTOR_T& v, At(&) theArray [N] )
Assignment operator for initializing a std::vector from a C array (The vector will be automatically set to the correct size).
CVectorDouble v; const double numbers[] = { 1,2,3,5,6,7,8,9,10 }; loadVector( v, numbers );
This operator performs the appropiate type castings, if required.
template <typename T, typename At, size_t N> std::vector<T>& mrpt::math::loadVector( std::vector<T>& v, At(&) theArray [N] )
This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.
template <class T> void mrpt::math::wrapTo2PiInPlace(T& a)
Modifies the given angle to translate it into the [0,2pi[ range.
Take care of not instancing this template for integer numbers, since it only works for float, double and long double.
See also:
wrapToPi, wrapTo2Pi, unwrap2PiSequence
template <class T> T mrpt::math::wrapTo2Pi(T a)
Modifies the given angle to translate it into the [0,2pi[ range.
Take care of not instancing this template for integer numbers, since it only works for float, double and long double.
See also:
wrapToPi, wrapTo2Pi, unwrap2PiSequence
template <class T> T mrpt::math::wrapToPi(T a)
Modifies the given angle to translate it into the ]-pi,pi] range.
Take care of not instancing this template for integer numbers, since it only works for float, double and long double.
See also:
wrapTo2Pi, wrapToPiInPlace, unwrap2PiSequence
template <class T> void mrpt::math::wrapToPiInPlace(T& a)
Modifies the given angle to translate it into the ]-pi,pi] range.
Take care of not instancing this template for integer numbers, since it only works for float, double and long double.
See also:
wrapToPi, wrapTo2Pi, unwrap2PiSequence
template <class VECTOR> void mrpt::math::unwrap2PiSequence(VECTOR& x)
Modify a sequence of angle values such as no consecutive values have a jump larger than PI in absolute value.
See also:
template <class T> T mrpt::math::angDistance(T from, T to)
Computes the shortest angular increment (or distance) between two planar orientations, such that it is constrained to [-pi,pi] and is correct for any combination of angles (e.g.
near +-pi) Examples: angDistance(0,pi) -> +pi; angDistance(pi,0) -> -pi; angDistance(-3.1,3.1) -> -0.08; angDistance(3.1,-3.1) -> +0.08; Take care of not instancing this template for integer numbers, since it only works for float, double and long double.
See also: