64 size_t N = m_modes.size();
72 for (it=m_modes.begin();it!=m_modes.end();++it)
75 sumW +=
w = exp(it->log_w);
76 X += it->val.mean.x() *
w;
77 Y += it->val.mean.y() *
w;
78 Z += it->val.mean.z() *
w;
98 size_t N = m_modes.size();
113 for (it=m_modes.begin();it!=m_modes.end();++it)
116 sumW +=
w = exp(it->log_w);
121 partCov.multiply_AAt(estMean_i);
122 partCov+=it->val.cov;
128 estCov *= (1.0/sumW);
146 for (it=m_modes.begin();it!=m_modes.end();++it)
150 out << it->val.cov(0,0) << it->val.cov(1,1) << it->val.cov(2,2);
151 out << it->val.cov(0,1) << it->val.cov(0,2) << it->val.cov(1,2);
174 for (it=m_modes.begin();it!=m_modes.end();++it)
179 if (
version==0) it->log_w = log(max(1e-300,it->log_w));
183 in >>
x; it->val.cov(0,0) =
x;
184 in >>
x; it->val.cov(1,1) =
x;
185 in >>
x; it->val.cov(2,2) =
x;
187 in >>
x; it->val.cov(1,0) =
x; it->val.cov(0,1) =
x;
188 in >>
x; it->val.cov(2,0) =
x; it->val.cov(0,2) =
x;
189 in >>
x; it->val.cov(1,2) =
x; it->val.cov(2,1) =
x;
203 if (
this == &o)
return;
207 m_modes =
static_cast<const CPointPDFSOG*
>(&o)->m_modes;
213 m_modes[0].log_w = 0;
232 it->val.mean.x(), it->val.mean.y(), it->val.mean.z(),
233 it->val.cov(0,0),it->val.cov(1,1),it->val.cov(2,2),
234 it->val.cov(0,1),it->val.cov(0,2),it->val.cov(1,2) );
244 it->val.changeCoordinatesReference( newReferenceBase );
258 vector<double> logWeights( m_modes.size() );
259 vector<size_t> outIdxs;
262 for (it=m_modes.begin(),itW=logWeights.begin();it!=m_modes.end();++it,++itW)
265 CParticleFilterCapable::computeResampling(
266 CParticleFilter::prMultinomial,
272 size_t selectedIdx = outIdxs[0];
273 ASSERT_(selectedIdx<m_modes.size());
282 outSample.
x( selMode->mean.x() + vec[0] );
283 outSample.
y( selMode->mean.y() + vec[1] );
284 outSample.z( selMode->mean.z() + vec[2] );
307 float minMahalanobisDistToDrop2 =
square(minMahalanobisDistToDrop);
310 this->m_modes.clear();
318 if (
c.get_unsafe(2,2)==0)
333 double a = -0.5*( 3*log(
M_2PI) - log( covInv.det() ) +
334 eta.multiply_HtCH_scalar(
c));
338 auxSOG_Kernel_i = (*it2).val;
339 if (auxSOG_Kernel_i.
cov.get_unsafe(2,2)==0) { auxSOG_Kernel_i.
cov.set_unsafe(2,2,1); is2D=
true; }
340 ASSERT_(auxSOG_Kernel_i.
cov(0,0)>0 && auxSOG_Kernel_i.
cov(1,1)>0 )
344 bool reallyComputeThisOne =
true;
345 if (minMahalanobisDistToDrop>0)
350 float stdX2 = max(auxSOG_Kernel_i.
cov.get_unsafe(0,0) , (*it1).val.cov.get_unsafe(0,0));
351 mahaDist2 =
square( auxSOG_Kernel_i.
mean.
x() - (*it1).val.mean.x() )/stdX2;
353 float stdY2 = max(auxSOG_Kernel_i.
cov.get_unsafe(1,1), (*it1).val.cov.get_unsafe(1,1));
354 mahaDist2 +=
square( auxSOG_Kernel_i.
mean.
y() - (*it1).val.mean.y() )/stdY2;
358 float stdZ2 = max( auxSOG_Kernel_i.
cov.get_unsafe(2,2), (*it1).val.cov.get_unsafe(2,2) );
359 mahaDist2 +=
square( auxSOG_Kernel_i.
mean.z() - (*it1).val.mean.z() )/stdZ2;
362 reallyComputeThisOne = mahaDist2 < minMahalanobisDistToDrop2;
365 if (reallyComputeThisOne)
379 newKernel.
val = auxGaussianProduct;
383 eta_i = covInv_i * eta_i;
387 new_eta_i = new_covInv_i * new_eta_i;
389 double a_i = -0.5*( 3*log(
M_2PI) - log( new_covInv_i.det() ) + (eta_i.adjoint() * auxSOG_Kernel_i.
cov * eta_i)(0,0) );
390 double new_a_i = -0.5*( 3*log(
M_2PI) - log( new_covInv_i.det() ) + (new_eta_i.adjoint() * newKernel.
val.
cov * new_eta_i)(0,0) );
392 newKernel.
log_w = (it1)->log_w + (it2)->log_w +
a + a_i - new_a_i ;
395 if (is2D) newKernel.
val.
cov(2,2)=0;
398 this->m_modes.push_back( newKernel );
419 it->val.cov(0,1) = it->val.cov(1,0);
420 it->val.cov(0,2) = it->val.cov(2,0);
421 it->val.cov(1,2) = it->val.cov(2,1);
434 if (!m_modes.size())
return;
437 double maxW = m_modes[0].log_w;
438 for (it=m_modes.begin();it!=m_modes.end();++it)
439 maxW = max(maxW,it->log_w);
441 for (it=m_modes.begin();it!=m_modes.end();++it)
457 double sumLinearWeights = 0;
458 for (it=m_modes.begin();it!=m_modes.end();++it) sumLinearWeights += exp(it->log_w);
461 for (it=m_modes.begin();it!=m_modes.end();++it)
462 cum+=
square( exp(it->log_w) / sumLinearWeights );
466 else return 1.0/(m_modes.size()*cum);
489 const size_t Nx = (size_t)ceil((x_max-x_min)/resolutionXY);
490 const size_t Ny = (size_t)ceil((y_max-y_min)/resolutionXY);
491 outMatrix.setSize(Ny,Nx);
493 for (
size_t i=0;i<Ny;i++)
495 const float y = y_min + i*resolutionXY;
496 for (
size_t j=0;j<Nx;j++)
498 float x = x_min + j*resolutionXY;
499 outMatrix(i,j) = evaluatePDF(
CPoint3D(
x,
y,
z),sumOverAllZs);
513 bool sumOverAllZs )
const 542 MU(0,0) = it->val.mean.x();
543 MU(1,0) = it->val.mean.y();
545 COV(0,0) = it->val.cov(0,0);
546 COV(1,1) = it->val.cov(1,1);
547 COV(0,1) = COV(1,0) = it->val.cov(0,1);
569 if (it_best==m_modes.end() || it->log_w>it_best->log_w)
572 outVal = it_best->val;
A namespace of pseudo-random numbers genrators of diferent distributions.
void drawSingleSample(CPoint3D &outSample) const MRPT_OVERRIDE
Draw a sample from the pdf.
double x() const
Common members of all points & poses classes.
FILE BASE_IMPEXP * fopen(const char *fileName, const char *mode) MRPT_NO_THROWS
An OS-independent version of fopen.
EIGEN_STRONG_INLINE bool empty() const
Classes for serialization, sockets, ini-file manipulation, streams, list of properties-values, timewatch, extensions to STL.
void saveToTextFile(const std::string &file) const MRPT_OVERRIDE
Save the density to a text file, with the following format: There is one row per Gaussian "mode"...
This class is a "CSerializable" wrapper for "CMatrixTemplateNumeric<double>".
CMatrixFixedNumeric< double, 3, 1 > CMatrixDouble31
This namespace provides a OS-independent interface to many useful functions: filenames manipulation...
int BASE_IMPEXP void BASE_IMPEXP fclose(FILE *f)
An OS-independent version of fclose.
#define IMPLEMENTS_SERIALIZABLE(class_name, base, NameSpace)
This must be inserted in all CSerializable classes implementation files.
CPoint3D mean
The mean value.
The namespace for Bayesian filtering algorithm: different particle filters and Kalman filter algorith...
void resize(const size_t N)
Resize the number of SOG modes.
Declares a class that represents a Probability Density function (PDF) of a 3D point ...
The struct for each mode:
BASE_IMPEXP CRandomGenerator randomGenerator
A static instance of a CRandomGenerator class, for use in single-thread applications.
Column vector, like Eigen::MatrixX*, but automatically initialized to zeros since construction...
void clear()
Clear all the gaussian modes.
int BASE_IMPEXP fprintf(FILE *fil, const char *format,...) MRPT_NO_THROWS MRPT_printf_format_check(2
An OS-independent version of fprintf.
void changeCoordinatesReference(const CPose3D &newReferenceBase) MRPT_OVERRIDE
this = p (+) this.
const Scalar * const_iterator
GLubyte GLubyte GLubyte GLubyte w
T square(const T x)
Inline function for the square of a number.
void bayesianFusion(const CPointPDFGaussian &p1, const CPointPDFGaussian &p2)
Bayesian fusion of two points gauss.
This base class is used to provide a unified interface to files,memory buffers,..Please see the deriv...
This base provides a set of functions for maths stuff.
virtual const mrpt::utils::TRuntimeClassId * GetRuntimeClass() const
Returns information about the class of an object in runtime.
#define MRPT_THROW_UNKNOWN_SERIALIZATION_VERSION(__V)
For use in CSerializable implementations.
mrpt::math::CMatrixDouble33 cov
The 3x3 covariance matrix.
void readFromStream(mrpt::utils::CStream &in, int version)
Introduces a pure virtual method responsible for loading from a CStream This can not be used directly...
std::deque< TGaussianMode >::const_iterator const_iterator
void getCovarianceAndMean(mrpt::math::CMatrixDouble33 &cov, CPoint3D &mean_point) const MRPT_OVERRIDE
Returns an estimate of the point covariance matrix (3x3 cov matrix) and the mean, both at once...
void getMean(CPoint3D &mean_point) const MRPT_OVERRIDE
Returns an estimate of the point, (the mean, or mathematical expectation of the PDF) ...
void normalizeWeights()
Normalize the weights in m_modes such as the maximum log-weight is 0.
GLsizei const GLchar ** string
A class used to store a 3D point.
Declares a class that represents a probability density function (pdf) of a 2D pose (x...
Classes for 2D/3D geometry representation, both of single values and probability density distribution...
#define CLASS_ID(class_name)
Access to runtime class ID for a defined class name.
void bayesianFusion(const CPointPDF &p1, const CPointPDF &p2, const double &minMahalanobisDistToDrop=0) MRPT_OVERRIDE
Bayesian fusion of two point distributions (product of two distributions->new distribution), then save the result in this object (WARNING: See implementing classes to see classes that can and cannot be mixtured!)
A class used to store a 3D pose (a 3D translation + a rotation in 3D).
double ESS() const
Computes the "Effective sample size" (typical measure for Particle Filters), applied to the weights o...
void evaluatePDFInArea(float x_min, float x_max, float y_min, float y_max, float resolutionXY, float z, mrpt::math::CMatrixD &outMatrix, bool sumOverAllZs=false)
Evaluates the PDF within a rectangular grid and saves the result in a matrix (each row contains value...
double log_w
The log-weight.
void getMostLikelyMode(CPointPDFGaussian &outVal) const
Return the Gaussian mode with the highest likelihood (or an empty Gaussian if there are no modes in t...
virtual void getCovarianceAndMean(mrpt::math::CMatrixFixedNumeric< double, STATE_LEN, STATE_LEN > &cov, TDATA &mean_point) const =0
Returns an estimate of the pose covariance matrix (STATE_LENxSTATE_LEN cov matrix) and the mean...
void drawGaussianMultivariate(std::vector< T > &out_result, const mrpt::math::CMatrixTemplateNumeric< T > &cov, const std::vector< T > *mean=NULL)
Generate multidimensional random samples according to a given covariance matrix.
void writeToStream(mrpt::utils::CStream &out, int *getVersion) const
Introduces a pure virtual method responsible for writing to a CStream.
unsigned __int32 uint32_t
Declares a class that represents a Probability Distribution function (PDF) of a 3D point (x...
double BASE_IMPEXP normalPDF(double x, double mu, double std)
Evaluates the univariate normal (Gaussian) distribution at a given point "x".
GLubyte GLubyte GLubyte a
void copyFrom(const CPointPDF &o) MRPT_OVERRIDE
Copy operator, translating if necesary (for example, between particles and gaussian representations) ...
double evaluatePDF(const CPoint3D &x, bool sumOverAllZs) const
Evaluates the PDF at a given point.
CListGaussianModes m_modes
The list of SOG modes.
A gaussian distribution for 3D points.
void assureSymmetry()
Assures the symmetry of the covariance matrix (eventually certain operations in the math-coprocessor ...