Bundle-Adjustment methods¶
// global functions double mrpt::vision::bundle_adj_full( const mrpt::vision::TSequenceFeatureObservations& observations, const mrpt::img::TCamera& camera_params, mrpt::vision::TFramePosesVec& frame_poses, mrpt::vision::TLandmarkLocationsVec& landmark_points, const mrpt::containers::yaml& extra_params = {}, const mrpt::vision::TBundleAdjustmentFeedbackFunctor user_feedback = mrpt::vision::TBundleAdjustmentFeedbackFunctor() ); void mrpt::vision::ba_initial_estimate( const mrpt::vision::TSequenceFeatureObservations& observations, const mrpt::img::TCamera& camera_params, mrpt::vision::TFramePosesVec& frame_poses, mrpt::vision::TLandmarkLocationsVec& landmark_points ); void mrpt::vision::ba_initial_estimate( const mrpt::vision::TSequenceFeatureObservations& observations, const mrpt::img::TCamera& camera_params, mrpt::vision::TFramePosesMap& frame_poses, mrpt::vision::TLandmarkLocationsMap& landmark_points ); double mrpt::vision::reprojectionResiduals( const mrpt::vision::TSequenceFeatureObservations& observations, const mrpt::img::TCamera& camera_params, const mrpt::vision::TFramePosesVec& frame_poses, const mrpt::vision::TLandmarkLocationsVec& landmark_points, std::vector<std::array<double, 2>>& out_residuals, const bool frame_poses_are_inverse, const bool use_robust_kernel = true, const double kernel_param = 3.0, std::vector<double>* out_kernel_1st_deriv = nullptr ); double mrpt::vision::reprojectionResiduals( const mrpt::vision::TSequenceFeatureObservations& observations, const mrpt::img::TCamera& camera_params, const mrpt::vision::TFramePosesMap& frame_poses, const mrpt::vision::TLandmarkLocationsMap& landmark_points, std::vector<std::array<double, 2>>& out_residuals, const bool frame_poses_are_inverse, const bool use_robust_kernel = true, const double kernel_param = 3.0, std::vector<double>* out_kernel_1st_deriv = nullptr ); void mrpt::vision::add_se3_deltas_to_frames( const mrpt::vision::TFramePosesVec& frame_poses, const mrpt::math::CVectorDouble& delta, const size_t delta_first_idx, const size_t delta_num_vals, mrpt::vision::TFramePosesVec& new_frame_poses, const size_t num_fix_frames ); void mrpt::vision::add_3d_deltas_to_points( const mrpt::vision::TLandmarkLocationsVec& landmark_points, const mrpt::math::CVectorDouble& delta, const size_t delta_first_idx, const size_t delta_num_vals, mrpt::vision::TLandmarkLocationsVec& new_landmark_points, const size_t num_fix_points );
Global Functions¶
double mrpt::vision::bundle_adj_full( const mrpt::vision::TSequenceFeatureObservations& observations, const mrpt::img::TCamera& camera_params, mrpt::vision::TFramePosesVec& frame_poses, mrpt::vision::TLandmarkLocationsVec& landmark_points, const mrpt::containers::yaml& extra_params = {}, const mrpt::vision::TBundleAdjustmentFeedbackFunctor user_feedback = mrpt::vision::TBundleAdjustmentFeedbackFunctor() )
Sparse Levenberg-Marquart solution to bundle adjustment - optimizes all the camera frames & the landmark locations.
At input a gross estimation of the frame poses & the landmark points must be supplied. If you don’t have such a starting point, use mrpt::vision::ba_initial_estimate() to compute it.
At output the best found solution will be returned in the variables. Optionally, a functor can be passed for having feedback on the progress at each iteration (you can use it to refresh a GUI, display a progress bar, etc…).
This implementation is almost entirely an adapted version from RobotVision (at OpenSLAM.org) (C) by Hauke Strasdat (Imperial College London), licensed under GNU LGPL. See the related paper: H. Strasdat, J.M.M. Montiel, A.J. Davison: “Scale Drift-Aware Large Scale Monocular SLAM”, RSS2010, http://www.roboticsproceedings.org/rss06/p10.html
List of optional parameters in “extra_params”:
“verbose” : Verbose output (default=0)
“max_iterations”: Maximum number of iterations to run (default=50)
“robust_kernel”: If !=0, use a robust kernel against outliers (default=1)
“kernel_param”: The pseudo-huber kernel parameter (default=3)
“mu”: Initial mu for LevMarq (default=-1 -> autoguess)
“num_fix_frames”: Number of first frame poses to don’t optimize (keep unmodified as they come in) (default=1: the first pose is the reference and is not modified)
“num_fix_points”: Idem, for the landmarks positions (default=0: optimize all)
“profiler”: If !=0, displays profiling information to the console at return.
In this function, all coordinates are absolute. Camera frames are such that +Z points forward from the focal point (see the figure in mrpt::obs::CObservationImage).
The first frame pose will be not updated since at least one frame must remain fixed.
Parameters:
observations |
[IN] All the feature observations (WITHOUT distortion), indexed by feature ID as lists of <frame_ID, (x,y)>. See TSequenceFeatureObservations. |
camera_params |
[IN] The camera parameters, mainly used for the intrinsic 3x3 matrix. Distortion params are ignored since it’s assumed that observations are already undistorted pixels. |
frame_poses |
[IN/OUT] Input: Gross estimation of each frame poses. Output: The found optimal solution. |
landmark_points |
[IN/OUT] Input: Gross estimation of each landmark point. Output: The found optimal solution. |
extra_params |
[IN] Optional extra parameters. Read above. |
user_feedback |
[IN] If provided, this functor will be called at each iteration to provide a feedback to the user. |
Returns:
The final overall squared error.
void mrpt::vision::ba_initial_estimate( const mrpt::vision::TSequenceFeatureObservations& observations, const mrpt::img::TCamera& camera_params, mrpt::vision::TFramePosesVec& frame_poses, mrpt::vision::TLandmarkLocationsVec& landmark_points )
Fills the frames & landmark points maps with an initial gross estimate from the sequence observations, so they can be fed to bundle adjustment methods.
See also:
void mrpt::vision::ba_initial_estimate( const mrpt::vision::TSequenceFeatureObservations& observations, const mrpt::img::TCamera& camera_params, mrpt::vision::TFramePosesMap& frame_poses, mrpt::vision::TLandmarkLocationsMap& landmark_points )
This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.
double mrpt::vision::reprojectionResiduals( const mrpt::vision::TSequenceFeatureObservations& observations, const mrpt::img::TCamera& camera_params, const mrpt::vision::TFramePosesVec& frame_poses, const mrpt::vision::TLandmarkLocationsVec& landmark_points, std::vector<std::array<double, 2>>& out_residuals, const bool frame_poses_are_inverse, const bool use_robust_kernel = true, const double kernel_param = 3.0, std::vector<double>* out_kernel_1st_deriv = nullptr )
Compute reprojection error vector (used from within Bundle Adjustment methods, but can be used in general) See mrpt::vision::bundle_adj_full for a description of most parameters.
Parameters:
frame_poses_are_inverse |
If set to true, global camera poses are \(\ominus F\) instead of \(F\), for each F in frame_poses. |
Returns:
Overall squared reprojection error.
double mrpt::vision::reprojectionResiduals( const mrpt::vision::TSequenceFeatureObservations& observations, const mrpt::img::TCamera& camera_params, const mrpt::vision::TFramePosesMap& frame_poses, const mrpt::vision::TLandmarkLocationsMap& landmark_points, std::vector<std::array<double, 2>>& out_residuals, const bool frame_poses_are_inverse, const bool use_robust_kernel = true, const double kernel_param = 3.0, std::vector<double>* out_kernel_1st_deriv = nullptr )
Compute reprojection error vector (used from within Bundle Adjustment methods, but can be used in general) See mrpt::vision::bundle_adj_full for a description of most parameters.
This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.
Returns:
Overall squared reprojection error.
void mrpt::vision::add_se3_deltas_to_frames( const mrpt::vision::TFramePosesVec& frame_poses, const mrpt::math::CVectorDouble& delta, const size_t delta_first_idx, const size_t delta_num_vals, mrpt::vision::TFramePosesVec& new_frame_poses, const size_t num_fix_frames )
For each pose in the vector frame_poses, adds a “delta” increment to the manifold, with the “delta” given in the se(3) Lie algebra:
new_frame_poses[i] = frame_poses[i] [+] delta[(first_idx+6*i):(first_idx+6*i+5)] , for every pose in frame_poses
With the left-multiplication convention of the manifold exp(delta) operator, that is:
p <-- p [+] delta ==> p <-- exp(delta) * p
Parameters:
delta_num_vals |
Used just for sanity check, must be equal to “frame_poses.size() * 6” |
void mrpt::vision::add_3d_deltas_to_points( const mrpt::vision::TLandmarkLocationsVec& landmark_points, const mrpt::math::CVectorDouble& delta, const size_t delta_first_idx, const size_t delta_num_vals, mrpt::vision::TLandmarkLocationsVec& new_landmark_points, const size_t num_fix_points )
For each pose in the vector frame_poses, adds a “delta” increment to the manifold, with the “delta” given in the se(3) Lie algebra:
new_landmark_points[i] = landmark_points[i] + delta[(first_idx+3*i):(first_idx+3*i+2)] , for every pose in landmark_points
Parameters:
delta_num_vals |
Used just for sanity check, must be equal to “landmark_points.size() * 3” |