class mrpt::maps::CColouredOctoMap
Overview
A three-dimensional probabilistic occupancy grid, implemented as an octo-tree with the “octomap” C++ library.
This version stores both, occupancy information and RGB colour data at each octree node. See the base class mrpt::maps::COctoMapBase.
The octomap library was presented in [9]
See also:
CMetricMap, the example in “MRPT/samples/octomap_simple”
#include <mrpt/maps/CColouredOctoMap.h> class CColouredOctoMap: public mrpt::maps::COctoMapBase { public: // enums enum TColourUpdate; // fields double resolution {0.10}; mrpt::maps::CColouredOctoMap::TInsertionOptions insertionOpts; mrpt::maps::CColouredOctoMap::TLikelihoodOptions likelihoodOpts; TInsertionOptions insertionOptions; // construction CColouredOctoMap(const double resolution = 0.10); // methods void insertRay( const float end_x, const float end_y, const float end_z, const float sensor_x, const float sensor_y, const float sensor_z ); void updateVoxel(const double x, const double y, const double z, bool occupied); bool isPointWithinOctoMap(const float x, const float y, const float z) const; double getResolution() const; unsigned int getTreeDepth() const; size_t size() const; size_t memoryUsage() const; size_t memoryUsageNode() const; size_t memoryFullGrid() const; double volume(); void getMetricSize(double& x, double& y, double& z); void getMetricSize(double& x, double& y, double& z) const; void getMetricMin(double& x, double& y, double& z); void getMetricMin(double& x, double& y, double& z) const; void getMetricMax(double& x, double& y, double& z); void getMetricMax(double& x, double& y, double& z) const; size_t calcNumNodes() const; size_t getNumLeafNodes() const; virtual void setOccupancyThres(double prob); virtual void setProbHit(double prob); virtual void setProbMiss(double prob); virtual void setClampingThresMin(double thresProb); virtual void setClampingThresMax(double thresProb); virtual double getOccupancyThres() const; virtual float getOccupancyThresLog() const; virtual double getProbHit() const; virtual float getProbHitLog() const; virtual double getProbMiss() const; virtual float getProbMissLog() const; virtual double getClampingThresMin() const; virtual float getClampingThresMinLog() const; virtual double getClampingThresMax() const; virtual float getClampingThresMaxLog() const; bool getPointColour( const float x, const float y, const float z, uint8_t& r, uint8_t& g, uint8_t& b ) const; void updateVoxelColour( const double x, const double y, const double z, const uint8_t r, const uint8_t g, const uint8_t b ); void setVoxelColourMethod(TColourUpdate new_method); TColourUpdate getVoxelColourMethod(); virtual void getAsOctoMapVoxels(mrpt::viz::COctoMapVoxels& gl_obj) const; virtual bool isEmpty() const; OCTOMAP_CLASS& getOctomap(); virtual std::string asString() const; virtual void saveMetricMapRepresentationToFile(const std::string& filNamePrefix) const; virtual void getVisualizationInto(mrpt::viz::CSetOfObjects& o) const; bool getPointOccupancy(const float x, const float y, const float z, double& prob_occupancy) const; void insertPointCloud( const CPointsMap& ptMap, const float sensor_x, const float sensor_y, const float sensor_z ); bool castRay( const mrpt::math::TPoint3D& origin, const mrpt::math::TPoint3D& direction, mrpt::math::TPoint3D& end, bool ignoreUnknownCells = false, double maxRange = -1.0 ) const; virtual void determineMatching2D( const mrpt::maps::CMetricMap* otherMap, const mrpt::poses::CPose2D& otherMapPose, mrpt::tfest::TMatchingPairList& correspondences, const TMatchingParams& params, TMatchingExtraResults& extraResults ) const; virtual float compute3DMatchingRatio(const mrpt::maps::CMetricMap* otherMap, const mrpt::poses::CPose3D& otherMapPose, const TMatchingRatioParams& params) const; };
Inherited Members
public: // typedefs typedef COctoMapBase<octree_t, octree_node_t> myself_t; // structs struct TInsertionOptions; struct TLikelihoodOptions; struct TRenderingOptions; // fields TLikelihoodOptions likelihoodOptions; TRenderingOptions renderingOptions; // methods virtual bool isEmpty() const = 0; virtual void saveMetricMapRepresentationToFile(const std::string& filNamePrefix) const = 0; virtual std::string asString() const = 0; virtual void getVisualizationInto(mrpt::viz::CSetOfObjects& o) const = 0; virtual void getAsOctoMapVoxels(mrpt::viz::COctoMapVoxels& gl_obj) const = 0; virtual void setOccupancyThres(double prob) = 0; virtual void setProbHit(double prob) = 0; virtual void setProbMiss(double prob) = 0; virtual void setClampingThresMin(double thresProb) = 0; virtual void setClampingThresMax(double thresProb) = 0; virtual double getOccupancyThres() const = 0; virtual float getOccupancyThresLog() const = 0; virtual double getProbHit() const = 0; virtual float getProbHitLog() const = 0; virtual double getProbMiss() const = 0; virtual float getProbMissLog() const = 0; virtual double getClampingThresMin() const = 0; virtual float getClampingThresMinLog() const = 0; virtual double getClampingThresMax() const = 0; virtual float getClampingThresMaxLog() const = 0;
Fields
double resolution {0.10}
The finest resolution of the octomap (default: 0.10.
mrpt::maps::CColouredOctoMap::TInsertionOptions insertionOpts
meters)
Observations insertion options
mrpt::maps::CColouredOctoMap::TLikelihoodOptions likelihoodOpts
Probabilistic observation likelihood options.
TInsertionOptions insertionOptions
The options used when inserting.
Construction
CColouredOctoMap(const double resolution = 0.10)
Default constructor.
Methods
void insertRay( const float end_x, const float end_y, const float end_z, const float sensor_x, const float sensor_y, const float sensor_z )
Just like insertPointCloud but with a single ray.
void updateVoxel(const double x, const double y, const double z, bool occupied)
Manually updates the occupancy of the voxel at (x,y,z) as being occupied (true) or free (false), using the log-odds parameters in insertionOptions.
bool isPointWithinOctoMap(const float x, const float y, const float z) const
Check whether the given point lies within the volume covered by the octomap (that is, whether it is “mapped”)
size_t size() const
Returns:
The number of nodes in the tree
size_t memoryUsage() const
Returns:
Memory usage of the complete octree in bytes (may vary between architectures)
size_t memoryUsageNode() const
Returns:
Memory usage of the a single octree node
size_t memoryFullGrid() const
Returns:
Memory usage of a full grid of the same size as the OcTree in bytes (for comparison)
void getMetricSize(double& x, double& y, double& z)
Size of OcTree (all known space) in meters for x, y and z dimension.
void getMetricSize(double& x, double& y, double& z) const
Size of OcTree (all known space) in meters for x, y and z dimension.
void getMetricMin(double& x, double& y, double& z)
minimum value of the bounding box of all known space in x, y, z
void getMetricMin(double& x, double& y, double& z) const
minimum value of the bounding box of all known space in x, y, z
void getMetricMax(double& x, double& y, double& z)
maximum value of the bounding box of all known space in x, y, z
void getMetricMax(double& x, double& y, double& z) const
maximum value of the bounding box of all known space in x, y, z
size_t calcNumNodes() const
Traverses the tree to calculate the total number of nodes.
size_t getNumLeafNodes() const
Traverses the tree to calculate the total number of leaf nodes.
bool getPointColour( const float x, const float y, const float z, uint8_t& r, uint8_t& g, uint8_t& b ) const
Get the RGB colour of a point.
Returns:
false if the point is not mapped, in which case the returned colour is undefined.
void updateVoxelColour( const double x, const double y, const double z, const uint8_t r, const uint8_t g, const uint8_t b )
Manually update the colour of the voxel at (x,y,z)
void setVoxelColourMethod(TColourUpdate new_method)
Set the method used to update voxels colour.
TColourUpdate getVoxelColourMethod()
Get the method used to update voxels colour.
virtual void getAsOctoMapVoxels(mrpt::viz::COctoMapVoxels& gl_obj) const
Builds a renderizable representation of the octomap as a mrpt::viz::COctoMapVoxels object.
virtual bool isEmpty() const
Returns true if the map is empty/no observation has been inserted.
OCTOMAP_CLASS& getOctomap()
Get a reference to the internal octomap object.
Example:
mrpt::maps::COctoMap map; octomap::OcTree &om = map.getOctomap<octomap::OcTree>();
virtual std::string asString() const
Returns a short description of the map.
virtual void saveMetricMapRepresentationToFile(const std::string& filNamePrefix) const
This virtual method saves the map to a file “filNamePrefix”+< some_file_extension >, as an image or in any other applicable way (Notice that other methods to save the map may be implemented in classes implementing this virtual interface).
virtual void getVisualizationInto(mrpt::viz::CSetOfObjects& o) const
Returns a 3D object representing the map.
See also:
bool getPointOccupancy( const float x, const float y, const float z, double& prob_occupancy ) const
Get the occupancy probability [0,1] of a point.
Returns:
false if the point is not mapped, in which case the returned “prob” is undefined.
void insertPointCloud( const CPointsMap& ptMap, const float sensor_x, const float sensor_y, const float sensor_z )
Update the octomap with a 2D or 3D scan, given directly as a point cloud and the 3D location of the sensor (the origin of the rays) in this map’s frame of reference.
Insertion parameters can be found in insertionOptions.
See also:
The generic observation insertion method CMetricMap::insertObservation()
bool castRay( const mrpt::math::TPoint3D& origin, const mrpt::math::TPoint3D& direction, mrpt::math::TPoint3D& end, bool ignoreUnknownCells = false, double maxRange = -1.0 ) const
Performs raycasting in 3d, similar to computeRay().
A ray is cast from origin with a given direction, the first occupied cell is returned (as center coordinate). If the starting coordinate is already occupied in the tree, this coordinate will be returned as a hit.
Parameters:
origin |
starting coordinate of ray |
direction |
A vector pointing in the direction of the raycast. Does not need to be normalized. |
end |
returns the center of the cell that was hit by the ray, if successful |
ignoreUnknownCells |
whether unknown cells are ignored. If false (default), the raycast aborts when an unkown cell is hit. |
maxRange |
Maximum range after which the raycast is aborted (<= 0: no limit, default) |
Returns:
whether or not an occupied cell was hit
virtual void determineMatching2D( const mrpt::maps::CMetricMap* otherMap, const mrpt::poses::CPose2D& otherMapPose, mrpt::tfest::TMatchingPairList& correspondences, const TMatchingParams& params, TMatchingExtraResults& extraResults ) const
Computes the matching between this and another 2D point map, which includes finding:
The set of points pairs in each map
The mean squared distance between corresponding pairs.
The algorithm is:
For each point in “otherMap”:
Transform the point according to otherMapPose
Search with a KD-TREE the closest correspondences in “this” map.
Add to the set of candidate matchings, if it passes all the thresholds in params.
This method is the most time critical one into ICP-like algorithms.
Parameters:
otherMap |
[IN] The other map to compute the matching with. |
otherMapPose |
[IN] The pose of the other map as seen from “this”. |
params |
[IN] Parameters for the determination of pairings. |
correspondences |
[OUT] The detected matchings pairs. |
extraResults |
[OUT] Other results. |
See also:
virtual float compute3DMatchingRatio( const mrpt::maps::CMetricMap* otherMap, const mrpt::poses::CPose3D& otherMapPose, const TMatchingRatioParams& params ) const
Computes the ratio in [0,1] of correspondences between “this” and the “otherMap” map, whose 6D pose relative to “this” is “otherMapPose” In the case of a multi-metric map, this returns the average between the maps.
This method always return 0 for grid maps.
Parameters:
otherMap |
[IN] The other map to compute the matching with. |
otherMapPose |
[IN] The 6D pose of the other map as seen from “this”. |
params |
[IN] Matching parameters |
Returns:
The matching ratio [0,1]
See also: