class mrpt::slam::CRangeBearingKFSLAM2D
Overview
An implementation of EKF-based SLAM with range-bearing sensors, odometry, SE(2) robot pose, and 2D landmarks.
The main method is processActionObservation() which processes pairs of actions/observations.
The following front-end applications are based on this class:
See also:
#include <mrpt/slam/CRangeBearingKFSLAM2D.h> class CRangeBearingKFSLAM2D: public bayes:: CKalmanFilterCapable< 3, 2, 2, 3 > { public: // typedefs typedef mrpt::math::TPoint2D landmark_point_t; // structs struct TDataAssocInfo; struct TOptions; // fields TOptions options; // construction CRangeBearingKFSLAM2D(); // methods void reset(); void processActionObservation(mrpt::obs::CActionCollection::Ptr& action, mrpt::obs::CSensoryFrame::Ptr& SF); void getCurrentState( mrpt::poses::CPosePDFGaussian& out_robotPose, std::vector<mrpt::math::TPoint2D>& out_landmarksPositions, std::map<unsigned int, mrpt::maps::CLandmark::TLandmarkID>& out_landmarkIDs, mrpt::math::CVectorDouble& out_fullState, mrpt::math::CMatrixDouble& out_fullCovariance ) const; void getCurrentRobotPose(mrpt::poses::CPosePDFGaussian& out_robotPose) const; void getAs3DObject(mrpt::viz::CSetOfObjects::Ptr& outObj) const; void loadOptions(const mrpt::config::CConfigFileBase& ini); void saveMapAndPath2DRepresentationAsMATLABFile( const std::string& fil, float stdCount = 3.0f, const std::string& styleLandmarks = std::string("b"), const std::string& stylePath = std::string("r"), const std::string& styleRobot = std::string("r") ) const; const TDataAssocInfo& getLastDataAssociation() const; };
Typedefs
typedef mrpt::math::TPoint2D landmark_point_t
Either mrpt::math::TPoint2D or mrpt::math::TPoint3D.
Fields
TOptions options
The options for the algorithm.
Construction
CRangeBearingKFSLAM2D()
Default constructor.
Methods
void reset()
Reset the state of the SLAM filter: The map is emptied and the robot put back to (0,0,0).
void processActionObservation(mrpt::obs::CActionCollection::Ptr& action, mrpt::obs::CSensoryFrame::Ptr& SF)
Process one new action and observations to update the map and robot pose estimate.
See the description of the class at the top of this page.
Parameters:
action |
May contain odometry |
SF |
The set of observations, must contain at least one CObservationBearingRange |
void getCurrentState( mrpt::poses::CPosePDFGaussian& out_robotPose, std::vector<mrpt::math::TPoint2D>& out_landmarksPositions, std::map<unsigned int, mrpt::maps::CLandmark::TLandmarkID>& out_landmarkIDs, mrpt::math::CVectorDouble& out_fullState, mrpt::math::CMatrixDouble& out_fullCovariance ) const
Returns the complete mean and cov.
Parameters:
out_robotPose |
The mean & 3x3 covariance matrix of the robot 2D pose |
out_landmarksPositions |
One entry for each of the M landmark positions (2D). |
out_landmarkIDs |
Each element[index] (for indices of out_landmarksPositions) gives the corresponding landmark ID. |
out_fullState |
The complete state vector (3+2M). |
out_fullCovariance |
The full (3+2M)x(3+2M) covariance matrix of the filter. |
See also:
void getCurrentRobotPose(mrpt::poses::CPosePDFGaussian& out_robotPose) const
Returns the mean & 3x3 covariance matrix of the robot 2D pose.
See also:
void getAs3DObject(mrpt::viz::CSetOfObjects::Ptr& outObj) const
Returns a 3D representation of the landmarks in the map and the robot 3D position according to the current filter state.
Parameters:
out_objects |
void loadOptions(const mrpt::config::CConfigFileBase& ini)
Load options from a ini-like file/text.
void saveMapAndPath2DRepresentationAsMATLABFile( const std::string& fil, float stdCount = 3.0f, const std::string& styleLandmarks = std::string("b"), const std::string& stylePath = std::string("r"), const std::string& styleRobot = std::string("r") ) const
Save the current state of the filter (robot pose & map) to a MATLAB script which displays all the elements in 2D.
const TDataAssocInfo& getLastDataAssociation() const
Returns a read-only reference to the information on the last data-association.